diff options
Diffstat (limited to 'Working_Examples/2777/CH6/EX6.13/Ex6_13.sce')
-rwxr-xr-x | Working_Examples/2777/CH6/EX6.13/Ex6_13.sce | 71 |
1 files changed, 71 insertions, 0 deletions
diff --git a/Working_Examples/2777/CH6/EX6.13/Ex6_13.sce b/Working_Examples/2777/CH6/EX6.13/Ex6_13.sce new file mode 100755 index 0000000..b159320 --- /dev/null +++ b/Working_Examples/2777/CH6/EX6.13/Ex6_13.sce @@ -0,0 +1,71 @@ +
+// ELECTRICAL MACHINES
+// R.K.Srivastava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 6 : SYNCHRONOUS MACHINES
+
+// EXAMPLE : 6.13
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+
+
+V = 400; // Operating voltage of the Synchronous generator in Volts
+VA = 60*10^3; // VA rating of the Synchronous generator in Volts-Amphere
+f = 50; // Operating Frequency of the Synchronous generator in Hertz
+xd = 1.5; // Direct axis reactances in Ohms
+xq = 0.6; // Quadrature axis reactances in Ohms
+
+
+// CALCULATIONS
+
+I = VA/(sqrt(3)*V); // Rated current in Amphere
+v = V/sqrt(3); // Rated Phase Votage in Volts
+
+// For Case (a) 0.80 lagging Power factor (Refer figure 6.36 page no. 421)
+
+pf_a = 0.8; // Power factor
+pfa_a = acosd(pf_a); // Power factor angle in deg
+pa_a = atand((I*xq*cosd(pfa_a))/(v+I*xq*sind(pfa_a))); // Power angle in deg
+Iq_a = I*cosd(pfa_a+pa_a); // Current in Amphere
+Id_a = I*sind(pfa_a+pa_a); // Current in Amphere
+Eo_a = sqrt((v+Id_a*xd*cosd(pa_a)-Iq_a*xq*sind(pa_a))^2 + (Id_a*xd*sind(pa_a)+Iq_a*xq*cosd(pa_a))^2); // Induced EMF in Volts
+pr_a = ((Eo_a-v)/v)*100; // Percentage regulation
+
+// For Case (b) Unity Power factor (Refer figure 6.37 page no. 422)
+
+pf_b = 1.0; // Power factor
+pfa_b= acosd(pf_b); // Power factor angle in deg
+pa_b = atand((I*xq*cosd(pfa_b))/(v+I*xq*sind(pfa_b))); // Power angle in deg
+Iq_b = I*cosd(pfa_b+pa_b);
+Id_b = I*sind(pfa_b+pa_b);
+Eo_b = sqrt((v+Id_b*xd*cosd(pa_b)-Iq_b*xq*sind(pa_b))^2 + (Id_b*xd*sind(pa_b)+Iq_b*xq*cosd(pa_b))^2); // Induced EMF in Volts
+pr_b = ((Eo_b-v)/v)*100; // Percentage regulation
+
+// For Case (c) 0.80 lagging Power factor (Refer figure 6.36 page no. 421)
+
+pf_c = 0.8; // Power factor
+pfa_c = acosd(pf_c); // Power factor angle in deg
+pa_c = atand((I*xq*cosd(pfa_c))/(v-I*xq*sind(pfa_c))); // Power angle in deg
+Iq_c = I*cosd(pfa_c-pa_c);
+Id_c = I*sind(pfa_c-pa_c);
+Eo_c = sqrt((v-Id_c*xd*cosd(pa_c)-Iq_c*xq*sind(pa_c))^2 + (-Id_c*xd*sind(pa_c)+Iq_c*xq*cosd(pa_c))^2); // Induced EMF in Volts
+pr_c = ((Eo_c-v)/v)*100; // Percentage regulation
+
+
+// DISPLAY RESULTS
+
+disp("EXAMPLE : 6.13: SOLUTION :-");
+printf("\n For Case (a) 0.80 lagging Power factor \n Induced EMF, EMF = %.2f V \n",Eo_a)
+printf("\n Power angle = %.3f degree \n",pa_a)
+printf("\n Percenatge Regulation, R = %.1f Percenatge \n",pr_a)
+printf("\n For Case (b) Unity Power factor \n Induced EMF, EMF = %.2f V \n",Eo_b)
+printf("\n Power angle = %.2f degree \n",pa_b)
+printf("\n Percenatge Regulation, R = %.2f Percenatge \n",pr_b)
+printf("\n For Case (c) 0.80 leading Power factor \n Induced EMF, EMF = %.2f V \n",Eo_c)
+printf("\n Power angle = %.2f degree \n",pa_c)
+printf("\n Percenatge Regulation, R = %.2f Percenatge \n",pr_c)
|