diff options
author | Siddharth Agarwal | 2019-09-03 18:27:40 +0530 |
---|---|---|
committer | Siddharth Agarwal | 2019-09-03 18:27:40 +0530 |
commit | 8ac15bc5efafa2afc053c293152605b0e6ae60ff (patch) | |
tree | e1bc17aae137922b1ee990f17aae4a6cb15b7d87 /Working_Examples/2777/CH7/EX7.4 | |
parent | 52a477ec613900885e29c4a0b02806a415b4f83a (diff) | |
download | Xcos_block_examples-master.tar.gz Xcos_block_examples-master.tar.bz2 Xcos_block_examples-master.zip |
Diffstat (limited to 'Working_Examples/2777/CH7/EX7.4')
-rwxr-xr-x | Working_Examples/2777/CH7/EX7.4/Ex7_4.sce | 51 |
1 files changed, 51 insertions, 0 deletions
diff --git a/Working_Examples/2777/CH7/EX7.4/Ex7_4.sce b/Working_Examples/2777/CH7/EX7.4/Ex7_4.sce new file mode 100755 index 0000000..ddb5252 --- /dev/null +++ b/Working_Examples/2777/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,51 @@ +
+// ELECTRICAL MACHINES
+// R.K.Srivastava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 7 : SPECIAL MOTORS AND INTRODUCTION TO GENERALIZED MACHINE THEORY
+
+// EXAMPLE : 7.4
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+
+m = 2; // Total number of phase in AC drag-cup servo Motor
+p = 2; // Number of poles
+Va = 220; // Operating Voltage of the servo Motor in Volts
+R1 = 350; // Circuit Parameter in Ohms
+R2 = 250; // Circuit Parameter in Ohms
+X1 = 60; // Circuit Parameter in Ohms
+X2 = 50; // Circuit Parameter in Ohms
+Xm = 900; // Circuit Parameter in Ohms
+s = 0.3; // Slip
+p = 0.8; // Ratio of the control winding and main winding voltage
+
+
+// CALCULATIONS
+
+Va1 = (Va*(1+p))/2; // Positive sequence voltage in Volts
+Va2 = (Va*(1-p))/2; // Negative sequence voltage in Volts
+Z11 = (R1+%i*X1);
+Z12 = (((%i*Xm)*(R2/s+%i*X2))/(%i*Xm+R2/s+%i*X2));
+Z1 = Z11 + Z12 ; // Positive sequence impedance in Ohms
+Z2 = (R1+%i*X1) + (((%i*Xm)*(R2/(2-s)+%i*X2))/(%i*Xm+R2/(2-s)+%i*X2)); // Negative sequence impedance in Ohms
+Ia1 = Va1/Z1; // Positive sequence current in Amphere
+I12 = (Ia1*Z12)/(R2/s); // Positive sequence current in Amphere
+Ia2 = Va2/Z2; // Negative sequence current in Amphere
+I22 = (Ia2*Z2)/(R2/(2-s)); // Negative sequence current in Amphere
+T1 = 2*(abs(I12)^2)*R2/s; // Positive sequence torque in Newton-meter
+T2 = 2*(abs(I22)^2)*R2/(2-s); // Negative sequence torque in Newton-meter
+T = T1 - T2; // Resultant torque in Newton-meter
+
+
+// DISPLAY RESULTS
+
+disp("EXAMPLE : 7.4: SOLUTION :-");
+printf("\n (a) Resultant torque, T = %.2f N-m \n",T)
+printf("\n\n IN THE ABOVE PROBLEM ALL THE VALUES PRINTED IN THE TEXT BOOK ARE NOT ACCURATE, SO VALUE OF THE TORQUE AND LINE CURRENTS ARE DIFFERING WHEN WE COMPARED TO THE TEXT BOOK ANSWERS FOR THE SAME. \n\n")
+printf("\n IN EVERY CALCULATED PARAMETER IN THE TEXT BOOK SLIGHT VARIATION IS THERE AS WE COMPARED TO MANUAL CALCULATION ITS FROM POSITIVE SEQUENCE IMPEDANCE (Z1) \n")
+
|