summaryrefslogtreecommitdiff
path: root/Working_Examples/2777/CH5/EX5.18
diff options
context:
space:
mode:
authorSiddharth Agarwal2019-09-03 18:27:40 +0530
committerSiddharth Agarwal2019-09-03 18:27:40 +0530
commit8ac15bc5efafa2afc053c293152605b0e6ae60ff (patch)
treee1bc17aae137922b1ee990f17aae4a6cb15b7d87 /Working_Examples/2777/CH5/EX5.18
parent52a477ec613900885e29c4a0b02806a415b4f83a (diff)
downloadXcos_block_examples-master.tar.gz
Xcos_block_examples-master.tar.bz2
Xcos_block_examples-master.zip
Xcos examples from textbooks and for blocksHEADmaster
Diffstat (limited to 'Working_Examples/2777/CH5/EX5.18')
-rwxr-xr-xWorking_Examples/2777/CH5/EX5.18/Ex5_18.sce54
1 files changed, 54 insertions, 0 deletions
diff --git a/Working_Examples/2777/CH5/EX5.18/Ex5_18.sce b/Working_Examples/2777/CH5/EX5.18/Ex5_18.sce
new file mode 100755
index 0000000..20f0e97
--- /dev/null
+++ b/Working_Examples/2777/CH5/EX5.18/Ex5_18.sce
@@ -0,0 +1,54 @@
+
+// ELECTRICAL MACHINES
+// R.K.Srivastava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 5 : INDUCTION MACHINES
+
+// EXAMPLE : 5.18
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+// From Previous problem data (Example 5.17)
+
+R1ac = 0.8127; // Corrected Value of AC stator winding Resistance in Ohms
+R2dc = 1.4433; // Second rotor parameter, rotor resistance referred to stator is at low frequency in Ohms
+Xs = 2.42; // Per phase leakage Reactance referred to stator in Ohms
+Xm = 64.4; // Magnetizing Reactance in Ohms
+Rc = 742; // Per phase core loss Resistance in Watts
+s = 0.035; // Slip
+m = 3; // Total Number of phase in Induction Motor
+p = 4; // Total number of Poles of Induction Motor
+f = 50; // Frequency in Hertz
+V = 440; // Operating Voltage of the Inductuon Motor
+out_hp = 20; // Motor Power Rating in Horse-Power
+
+
+// CALCULATIONS
+
+Vph = V/sqrt(3); // Per phase Voltage in Volts
+Ic = Vph/Rc; // Core loss current in Amphere
+I_m = Vph/(%i * Xm); // Magnetizing Current in Amphere
+I_o = Ic + I_m; // No-load current in Amphere
+I_2 = Vph/(R1ac+(R2dc/s)+(%i*Xs)); // Current in Amphere
+I1 = I_o + I_2; // Input Current in Amphere
+Pf = cosd(atand(imag(I1)/real(I1))); // Power factor
+P1 = 3*(abs(I_2)^2*R2dc)/s; // 3-phase air gap power or Rotor intake Power in Watts
+Po = P1*(1-s); // Output Power in Watts
+Ws = 2*%pi*((120*f/p)*(1/60)); // Angular Roatation in Radians per Seconds
+T = P1/Ws; // Torque in Newton-Meter
+
+
+// DISPLAY RESULTS
+
+disp("EXAMPLE : 5.18 : SOLUTION :-");
+printf("\n (a) Input current, I1 = %.2f < %.2f A \n",abs(I1),atand(imag(I1),real(I1)))
+printf("\n (b) Power Factor, Pf = %.3f Lagging \n",Pf)
+printf("\n (c) Output Power, P0 = %.2f W \n",Po)
+printf("\n (d) Torque, T = %.2f NM \n",T)
+printf("\n\n [ TEXT BOOK SOLUTION IS PRINTED WRONGLY ( I verified by manual calculation )]\n" );
+printf("\n WRONGLY PRINTED ANSWERS ARE :- (a) T = 4340.82 Nm instead of %.2f Nm \n ",T);
+printf("\n\n IN TEXT BOOK, CALCULATION OF TORQUE IS NOT DONE \n ");