diff options
author | Siddharth Agarwal | 2019-09-03 18:27:40 +0530 |
---|---|---|
committer | Siddharth Agarwal | 2019-09-03 18:27:40 +0530 |
commit | 8ac15bc5efafa2afc053c293152605b0e6ae60ff (patch) | |
tree | e1bc17aae137922b1ee990f17aae4a6cb15b7d87 /Working_Examples/2777/CH2 | |
parent | 52a477ec613900885e29c4a0b02806a415b4f83a (diff) | |
download | Xcos_block_examples-master.tar.gz Xcos_block_examples-master.tar.bz2 Xcos_block_examples-master.zip |
Diffstat (limited to 'Working_Examples/2777/CH2')
-rwxr-xr-x | Working_Examples/2777/CH2/EX2.1/Ex2_1.sce | 40 | ||||
-rwxr-xr-x | Working_Examples/2777/CH2/EX2.2/Ex2_2.sce | 53 | ||||
-rwxr-xr-x | Working_Examples/2777/CH2/EX2.3/Ex2_3.sce | 34 | ||||
-rwxr-xr-x | Working_Examples/2777/CH2/EX2.4/Ex2_4.sce | 48 | ||||
-rwxr-xr-x | Working_Examples/2777/CH2/EX2.5/Ex2_5.sce | 44 |
5 files changed, 219 insertions, 0 deletions
diff --git a/Working_Examples/2777/CH2/EX2.1/Ex2_1.sce b/Working_Examples/2777/CH2/EX2.1/Ex2_1.sce new file mode 100755 index 0000000..990fbe9 --- /dev/null +++ b/Working_Examples/2777/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,40 @@ +
+// ELECTRICAL MACHINES
+// R.K.Srivastava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 2 : FORCES IN AN ELECTROMAGNETIC SYSTEMS
+
+// EXAMPLE : 2.1
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+
+A = 0.0001; // The Cross-sectional area of core in metre-square
+Mo = 4*%pi*(10)^(-7); // Permeability of air in Henre/metre
+Mr = 1000; // Relative permeability of core
+N1 = 10;N2=20;N3=10; // Number of turns
+I1 = 1.0;I2=0.5;I3=1.5; // Currents in Amphere
+d = 2.5; // Dimension of inner window in centimetre
+w = 1.0; // Each limb wide in centimeter
+
+
+// CALCULATIONS
+
+F = (N1*I1)+(N2*I2)-(N3*I3); // MMF in Amphere-turns (minus because third coil produces the flux in opposite direction to that of other to coils)
+L = ((d*4)+(I2*2*4))*10^-2; // Length of the Magnetic path in metre (4-is sides of the windows)(2-Going and returning of current I2)
+R = L/(Mr*Mo*A); // Reluctance of the Magnetic path in MKS unit of Reluctance
+phi = (F*10^3)/R; // Flux in milli-Weber
+B = phi/A; // Flux Density in Weber/metre Square
+H = F/L; // Magnetic Field Intensity in Amphere-turns/Metre
+
+
+// DISPLAY RESULTS
+
+disp("EXAMPLE : 2.1 : SOLUTION :-") ;
+printf("\n (a) Flux in the core, phi = %.6f mWb ,\n",phi);
+printf("\n (b) Flux Density in the core, B = %.2f Wb/metre square \n",B);
+printf("\n (c) Magnetic Field Intensity in the core, H = %.2f At/m \n",H);
diff --git a/Working_Examples/2777/CH2/EX2.2/Ex2_2.sce b/Working_Examples/2777/CH2/EX2.2/Ex2_2.sce new file mode 100755 index 0000000..d8992bb --- /dev/null +++ b/Working_Examples/2777/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,53 @@ +
+// ELECTRICAL MACHINES
+// R.K.Srivastava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 2 : FORCES IN AN ELECTROMAGNETIC SYSTEMS
+
+// EXAMPLE : 2.2
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+
+N = 100; // Number of turns
+La = 0.3; // Mean arc length of material "a" is a Nickel-iron alloy in Metre
+Lb = 0.2; // Mean arc length of material "b" is a Steel in Metre
+Lc = 0.1; // Mean arc length of material "c" is a Cast Steel in Metre
+a = 0.001; // Area of the all Materials "a,b,c" in Metre-Square
+phi = 6*10^-4; // Magnetic Flux in Weber
+mue_0 = 4*%pi*10^ -7; // Permeability of the air in Henry/Meter
+
+
+// CALCULATIONS
+
+B = phi/a; // Flux Density in Telsa (Here Flux Density same for all the Materials "a,b,c" because Area of Cross Section is Same)
+Ha = 10; // Fileld Intensity in Amphere-Turn/Meter Correspounding to Flux density (B) of material "a" obtained from the Standard B-H curve
+Hb = 77; // Fileld Intensity in Amphere-Turn/Meter Correspounding to Flux density (B) of material "b" obtained from the Standard B-H curve
+Hc = 270; // Fileld Intensity in Amphere-Turn/Meter Correspounding to Flux density (B) of material "c" obtained from the Standard B-H curve
+F = (Ha*La)+(Hb*Lb)+(Hc*Lc); // The Total MMF Required in Amphere-Turns
+I = F/N; // Current flowing through the Coil in Amphere
+mue_r_a = B/(Ha*mue_0); // Relatative permeability of the Material "a"
+mue_r_b = B/(Hb*mue_0); // Relatative permeability of the Material "a"
+mue_r_c = B/(Hc*mue_0); // Relatative permeability of the Material "a"
+Ra = (Ha*La)/phi; // Relucatnce of the Material "a" in MKS unit
+Rb = (Hb*Lb)/phi; // Relucatnce of the Material "b" in MKS unit
+Rc = (Hc*Lc)/phi; // Relucatnce of the Material "c" in MKS unit
+L = (N*phi)/I; // Inductance of the Coil in Henry
+
+
+// DISPLAY RESULTS
+
+disp("EXAMPLE : 2.2 : SOLUTION :-") ;
+printf("\n (a) The Total MMF , F = %.1f At \n ",F);
+printf("\n (b) Current flowing through the Coil , I = %.3f A \n",I);
+printf("\n (c.1) Relatative permeability of the Material a, mue_r_a = %.f \n ",mue_r_a);
+printf("\n (c.2) Relatative permeability of the Material b, mue_r_b = %.f \n ",mue_r_b);
+printf("\n (c.3) Relatative permeability of the Material c, mue_r_c = %.f \n ",mue_r_c);
+printf("\n (c.4) Relucatnce of the Material a, Ra= %.f MKS unit \n",Ra);
+printf("\n (c.5) Relucatnce of the Material b, Rb= %.1f MKS unit \n",Rb);
+printf("\n (c.6) Relucatnce of the Material c, Rc= %.f MKS unit \n",Rc);
+printf("\n (d) Inductance of the Coil , L = %.4f H \n",L);
diff --git a/Working_Examples/2777/CH2/EX2.3/Ex2_3.sce b/Working_Examples/2777/CH2/EX2.3/Ex2_3.sce new file mode 100755 index 0000000..2821ad5 --- /dev/null +++ b/Working_Examples/2777/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,34 @@ +
+// ELECTRICAL MACHINES
+// R.K.Srivartava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 2 : FORCES IN AN ELECTROMAGNETIC SYSTEMS
+
+// EXAMPLE : 2.3
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+
+F = 35; // Total MMF in Amphere-Turns
+Lc = 0.1; // Inductance of The Material "c" in Henry
+a = 0.001; // Area of the all Materials "a,b,c" in Metre-Square
+
+
+// CALCULATIONS
+
+Hc = F/Lc; // Field Intensity in Amphere-Turns/Meter (Given that entire MMf apperas on Material "c" Because of the highest reluctance about 45000 MKS unit From Example 2.2)
+Bc = 0.65; // Flux density of material "c" in in Telsa obtained from the Standard B-H curve
+phi = Bc*a; // Flux in the core in Weber
+Ba = Bc; // Flux density of material "a" in in Telsa Same because Area of Cross Section is Same
+Bb = Bc; // Flux density of material "b" in in Telsabecause Area of Cross Section is Same
+
+
+// DISPLAY RESULTS
+
+disp("EXAMPLE : 2.3 : SOLUTION :-") ;
+printf("\n (a) Flux in the core , phi = %.5f Wb \n ",phi);
+printf("\n (b) Flux density of material a,b,c , Ba = Bb = Bc %.2f T \n",Ba);
diff --git a/Working_Examples/2777/CH2/EX2.4/Ex2_4.sce b/Working_Examples/2777/CH2/EX2.4/Ex2_4.sce new file mode 100755 index 0000000..8c46895 --- /dev/null +++ b/Working_Examples/2777/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,48 @@ +
+// ELECTRICAL MACHINES
+// R.K.Srivastava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 2 : FORCES IN AN ELECTROMAGNETIC SYSTEMS
+
+// EXAMPLE : 2.4
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+// Refer figure 2.7:- Page no. 41
+
+a = 0.0001; // Cross Sectional Area of the Core in Meter-Square
+Li = 0.158; // Total length of the Path abcdef in Meter (4.0*4.0 - 0.2 = 15.8cm = 0.158m)
+Lg = 0.002; // Length of the air gap in Meter
+mue_0 = 4*%pi*10^-7; // Permeability of the air in Henry/Meter
+mue_r = 10000; // Permeability of the core
+N = 10; // Number of Turns
+I = 1.0; // Current in the Coil in Amphere
+v = 50; // hall effect sensor generates volatge produces in milli volt per 1 Telsa
+Li_new = 0.16; // Length of the Flux path in Absence of the Air gap in Meter
+
+
+// CALCUALTIONS
+
+F = N*I; // MMF of the Coil in Amphere-turn
+Ri = Li/(mue_0*mue_r*a); // Relucatnce of the Iron Coil in MKS unit
+Rg = Lg/(mue_0*a); // Relucatnce of air gap in MKS unit
+R = Ri+Rg; // Total Reluctance in MKS unit
+phi = F/R; // Flux in the Core in Weber
+B = phi/a; // FLux density in the core(Presence of the Air gap) in Weber/Meter-Square
+HEV = B*50; // Output of the Hall effect Sensor device in Milli-Volt
+R_new = Li_new/(mue_0*mue_r*a) // Relucatance of the Magnetic Circuit in Absence of the Air gap
+phi_new = F/R_new; // New Flux in the Core in Weber
+B_new = phi_new/a; // New FLux density in the core in Weber/Meter-Square
+Ratio = B_new/B; // Ratio of the Flux Density in Absence of the Air gap and in the presence of the Air gap
+
+
+// DISPLAY RESULTS
+
+disp("EXAMPLE : 2.4 : SOLUTION :-") ;
+printf("\n (a) Flux density in the core(Presence of the Air gap) , B = %.8f Wb/Meter-Square \n ",B);
+printf("\n (b) Output of the Hall effect Sensor device , HEV = %.7f mV \n",HEV);
+printf("\n (c) Ratio of the Flux Density in Absence of the Air gap and in the presence of the Air gap , Ratio = %.2f \n ",Ratio);
diff --git a/Working_Examples/2777/CH2/EX2.5/Ex2_5.sce b/Working_Examples/2777/CH2/EX2.5/Ex2_5.sce new file mode 100755 index 0000000..068905a --- /dev/null +++ b/Working_Examples/2777/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,44 @@ +
+// ELECTRICAL MACHINES
+// R.K.Srivastava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 2 : FORCES IN AN ELECTROMAGNETIC SYSTEMS
+
+// EXAMPLE : 2.5
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+// Refer figure 2.3(a):- Page no. 36
+
+B = 1.0; // Flux Density in the Core in Weber/Meter-Square
+Liron = 0.55; // Mean length of the flux path of Iron in Meter
+Lair = 0.002; // Mean length of the flux path of Air Gap in Meter
+I = 20; // Coil Current in Amphere
+H = 200; // Field Intensity in Amphere-Turns/Meter
+mue_r = 20000; // Relative permeability of Ferrite core
+mue_0 = 4*%pi*10^-7; // Permeability of the air in Henry/Meter
+a = 0.0025; // Area of the Cross sectional of the core oin Metre-Square
+
+
+// CALCULATIONS
+
+phi = B*a; // Toatl Flux in the core in Weber
+Rair = Lair/(mue_0*a); // Relucatnce in the Air gap
+Fair = Rair*phi; // MMf in the Air gap in Amphere-Turns
+Firon = H*Liron; // MMf in the Iron core in Amphere-Turns
+F = Firon+Fair; // Total MMF in Amphere-Turns
+N = F/I; // Number of turns in the Coil
+F_new = B/(mue_0*mue_r); // Field Intensity in Amphere-Turns/Meter
+F_new_total = (Fair+F_new); // Total MMF in Amphere-Turns
+N_new = F_new_total/I; // Number of turns in the Coil
+
+
+// DISPLAY RESULTS
+
+disp("EXAMPLE : 2.5 : SOLUTION :-") ;
+printf("\n (a) Number of turns in the Coil in air gap made of Silicon Steel having an field intensity 200At/m corresounds to 1.0 T Flux Density , N = %.2f appoximately 85 \n ",N);
+printf("\n (b) Number of turns in the Coil for a ferrite core of having Relative premeability of 20000 and magnetic Field Density corresponnds to 1.0 T , N_new = %.2f appoximately 82 \n",N_new);
|