1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/poly.R
\name{idpoly}
\alias{idpoly}
\title{Polynomial model with identifiable parameters}
\usage{
idpoly(A = 1, B = 1, C = 1, D = 1, F1 = 1, ioDelay = 0, Ts = 1,
noiseVar = 1, intNoise = F, unit = c("seconds", "minutes", "hours",
"days")[1])
}
\arguments{
\item{A}{autoregressive coefficients}
\item{B, F1}{coefficients of the numerator and denominator respectively
of the deterministic model between the input and output}
\item{C, D}{coefficients of the numerator and denominator respectively
of the stochastic model}
\item{ioDelay}{the delay in the input-output channel}
\item{Ts}{sampling interval}
\item{noiseVar}{variance of the white noise source (Default=\code{1})}
\item{intNoise}{Logical variable indicating presence or absence of integrator
in the noise channel (Default=\code{FALSE})}
\item{unit}{time unit (Default=\code{"seconds"})}
}
\description{
Creates a polynomial model with identifiable coefficients
}
\details{
Discrete-time polynomials are of the form
\deqn{
A(q^{-1}) y[k] = \frac{B(q^{-1})}{F1(q^{-1})} u[k] +
\frac{C(q^{-1})}{D(q^{-1})} e[k]
}
}
\examples{
# define output-error model
mod_oe <- idpoly(B=c(0.6,-0.2),F1=c(1,-0.5),ioDelay = 2,Ts=0.1,
noiseVar = 0.1)
# define box-jenkins model with unit variance
B <- c(0.6,-0.2)
C <- c(1,-0.3)
D <- c(1,1.5,0.7)
F1 <- c(1,-0.5)
mod_bj <- idpoly(1,B,C,D,F1,ioDelay=1)
}
|