1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
#' @export
sim <- function(model,input,sigma=0) UseMethod("sim")
#' @export
sim.default <- function(model,input,sigma=0){
print("The sim method is not developed for the current class of the object")
}
#' Simulate from an ARX Model
#'
#' Simulate the response of an ARX system, given the input
#'
#' @param model an object of class \code{arx} containing the coefficients
#' @param input a vector/matrix containing the input
#' @param sigma standard deviation of the innovations (Default= \code{0})
#'
#' @return
#' a vector containing the output
#'
#' @details
#' The routine is currently built only for SISO systems. Future Versions will
#' include support for MIMO systems
#'
#' @seealso
#' \code{\link{arx}} for defining ARX models
#'
#' @examples
#' u <- rnorm(100,1)
#' model <- arx(A=c(1,-1.5,0.7),B=c(0.8,-0.25))
#' y <- sim(model,u,sigma=3)
#'
#' @export
sim.arx <- function(model,input,sigma=0){
na <- length(model$A) - 1; nk <- model$ioDelay;
nb <- length(model$B) - nk; nb1 <- nb+nk
n <- max(na,nb1)
coef <- matrix(c(model$A[-1],model$B),nrow=na+nb1)
y <- rep(0,length(input)+n)
u <- c(rep(0,n),input)
# padLeftZeros <- function(x) c(rep(0,n),x)
# u <- apply(input,2,padLeftZeros)
for(i in n+1:length(input)){
reg <- matrix(c(-(y[i-1:na]),u[i-nk:nb1]),ncol=na+nb1)
y[i] <- reg%*%coef + rnorm(1,sd = sigma)
}
return(y[n+1:length(input)])
}
|