summaryrefslogtreecommitdiff
path: root/R/sim.R
blob: c6565a51c7abeb905960ae16181de97734d7d7c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#' @export
sim <- function(model,input,sigma=0,seed=NULL) UseMethod("sim")

#' @export
sim.default <- function(model,input,sigma=0,seed=NULL){
  print("The sim method is not developed for the current class of the object")
}

#' Simulate from an ARX Model
#' 
#' Simulate the response of an ARX system, given the input
#' 
#' @param model an object of class \code{arx} containing the coefficients
#' @param input a vector/matrix containing the input
#' @param sigma standard deviation of the innovations (Default= \code{0})
#' @param seed integer indicating the seed value of the random number generator
#' 
#' @return
#' a vector containing the output
#' 
#' @details
#' The routine is currently built only for SISO systems. Future Versions will
#' include support for MIMO systems
#' 
#' @seealso 
#' \code{\link{arx}} for defining ARX models
#' 
#' @examples
#' u <- rnorm(200,sd=1)
#' model <- arx(A=c(1,-1.5,0.7),B=c(0.8,-0.25),ioDelay=1)
#' y <- sim(model,u,sigma=0.1)
#'  
#' @export
sim.arx <- function(model,input,sigma=0,seed=NULL){
  na <- length(model$A) - 1; nk <- model$ioDelay; 
  nb <- length(model$B) - nk; nb1 <- nb+nk
  n <- max(na,nb1)
  coef <- matrix(c(model$A[-1],model$B),nrow=na+nb1) 
  
  y <- rep(0,length(input)+n)
  u <- c(rep(0,n),input$input[,1])
  
  if(!is.null(seed)) set.seed(seed)
  
  ek <- rnorm(length(input),sd=sigma)
  # padLeftZeros <- function(x) c(rep(0,n),x)
  # u <- apply(input,2,padLeftZeros)
  
  for(i in n+1:length(input)){
    if(nk==0) v <- u[i-0:(nb-1)] else v <- u[i-nk:nb1]
    reg <- matrix(c(-(y[i-1:na]),v),ncol=na+nb1)
    y[i] <- reg%*%coef + ek[i-n]
  }
  return(y[n+1:length(input)])
}

#' Simulate from a Polynomial Model
#' 
#' Simulate the response of a system system governed by a polynomial model
#' , given the input
#' 
#' @param model an object of class \code{idpoly} containing the coefficients
#' @param input a vector/matrix containing the input
#' @param sigma standard deviation of the innovations (Default= \code{0})
#' @param seed integer indicating the seed value of the random number generator
#' 
#' @return
#' a vector containing the output
#' 
#' @details
#' The routine is currently built only for SISO systems. Future Versions will
#' include support for MIMO systems
#' 
#' @seealso 
#' \code{\link{idpoly}} for defining polynomial models
#' 
#' @examples
#' u <- rnorm(200,sd=1)
#' model <- idpoly(A=c(1,-1.5,0.7),B=c(0.8,-0.25),C=1,D=1,F1=1,ioDelay=1)
#' y <- sim(model,u,sigma=0.1)
#'  
#' @export
sim.idpoly <- function(model,input,sigma=0,seed=NULL){
  require(signal);require(polynom)
  
  n <- length(input)[1]
  if(!is.null(seed)) set.seed(seed)
  ek <- rnorm(n,sd=sigma)
  den1 <- as.numeric(polynomial(model$A)*polynomial(model$D))
  filt1 <- Arma(b=model$C,a=den1)
  vk <- signal::filter(filt1,ek)
  
  B <- c(rep(0,model$ioDelay),model$B)
  den2 <- as.numeric(polynomial(model$A)*polynomial(model$F1))
  filt2 <- Arma(b=B,a=den2)
  ufk <- signal::filter(filt2,input)
  
  yk <- as.numeric(ufk) + as.numeric(vk)
  
  return(as.numeric(yk))
}