1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
#' Simulate response of dynamic system
#'
#' Simulate the response of a system to a given input
#'
#' @param model the linear system to simulate
#' @param input a vector/matrix containing the input
#' @param addNoise logical variable indicating whether to add noise to the
#' response model. (Default: \code{FALSE})
#' @param innov an optional times series of innovations. If not supplied (specified
#' as \code{NULL}), gaussian white noise is generated, with the variance specified in
#' the model (Property: \code{noiseVar})
#' @param seed integer indicating the seed value of the random number generator.
#' Useful for reproducibility purposes.
#'
#' @return
#' a vector containing the simulated output
#'
#' @details
#' The routine is currently built only for SISO systems. Future versions will
#' include support for MIMO systems.
#'
#' @examples
#' # ARX Model
#' u <- idinput(300,"rgs")
#' model <- idpoly(A=c(1,-1.5,0.7),B=c(0.8,-0.25),ioDelay=1,
#' noiseVar=0.1)
#' y <- sim(model,u,addNoise=TRUE)
#'
#' @export
sim <- function(model,input,addNoise = F,innov=NULL,seed=NULL) UseMethod("sim")
#' @export
sim.default <- function(model,input,addNoise = F,innov=NULL,seed=NULL){
print("The sim method is not developed for the current class of the object")
}
#' @import signal polynom
#' @export
sim.idpoly <- function(model,input,addNoise = F,innov=NULL,seed=NULL){
B <- c(rep(0,model$ioDelay),model$B)
Gden <- as.numeric(polynomial(model$A)*polynomial(model$F1))
G <- signal::Arma(b=B,a=Gden)
ufk <- signal::filter(G,input)
yk <- as.numeric(ufk)
if(addNoise){
n <- ifelse(is.numeric(input),length(input),dim(input)[1])
if(!is.null(innov)){
ek <- innov
} else{
if(!is.null(seed)) set.seed(seed)
ek <- rnorm(n,sd=sqrt(model$noiseVar))
}
den1 <- as.numeric(polynomial(model$A)*polynomial(model$D))
filt1 <- Arma(b=model$C,a=den1)
vk <- signal::filter(filt1,ek)
yk <- yk + as.numeric(vk)
}
return(yk)
}
# sim_arx <- function(model,input,ek){
# na <- length(model$A) - 1; nk <- model$ioDelay;
# nb <- length(model$B) - 1; nb1 <- nb+nk
# n <- max(na,nb1)
# coef <- matrix(c(model$A[-1],model$B),nrow=na+(nb+1))
#
# if(class(input)=="idframe"){
# uk <- input$input[,1,drop=T]
# } else if(class(input) %in% c("matrix","data.frame")){
# uk <- input[,1,drop=T]
# } else if(is.numeric(input)){
# uk <- input
# }
#
# y <- rep(0,length(input)+n)
# u <- c(rep(0,n),uk)
#
# for(i in n+1:length(uk)){
# if(nk==0) v <- u[i-0:nb] else v <- u[i-nk:nb1]
# reg <- matrix(c(-(y[i-1:na]),v),ncol=na+(nb+1))
# y[i] <- reg%*%coef + ek[i]
# }
# return(y[n+1:length(uk)])
# }
|