1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
#' Polynomial model with identifiable parameters
#'
#' Creates a polynomial model with identifiable coefficients
#'
#' @param A autoregressive coefficients
#' @param B,F1 coefficients of the numerator and denominator respectively
#' of the deterministic model between the input and output
#' @param C,D coefficients of the numerator and denominator respectively
#' of the stochastic model
#' @param ioDelay the delay in the input-output channel
#' @param Ts sampling interval
#' @param noiseVar variance of the white noise source (Default=\code{1})
#' @param intNoise Logical variable indicating presence or absence of integrator
#' in the noise channel (Default=\code{FALSE})
#' @param unit time unit (Default=\code{"seconds"})
#'
#' @details
#' Discrete-time polynomials are of the form
#' \deqn{
#' A(q^{-1}) y[k] = \frac{B(q^{-1})}{F1(q^{-1})} u[k] +
#' \frac{C(q^{-1})}{D(q^{-1})} e[k]
#' }
#'
#' @examples
#' # define output-error model
#' mod_oe <- idpoly(B=c(0.6,-0.2),F1=c(1,-0.5),ioDelay = 2,Ts=0.1,
#' noiseVar = 0.1)
#'
#' # define box-jenkins model with unit variance
#' B <- c(0.6,-0.2)
#' C <- c(1,-0.3)
#' D <- c(1,1.5,0.7)
#' F1 <- c(1,-0.5)
#' mod_bj <- idpoly(1,B,C,D,F1,ioDelay=1)
#'
#' @export
idpoly <- function(A=1,B=1,C=1,D=1,F1=1,ioDelay=0,Ts=1,
noiseVar=1,intNoise = F,unit = c("seconds","minutes",
"hours","days")[1]){
Bindex <- which.max(B!=0)
ioDelay <- ifelse(Bindex-1==0,ioDelay,Bindex-1)
B <- B[Bindex:length(B)]
out <- list(A= A,B=B,C=C,D=D,F1=F1,ioDelay = ioDelay,Ts=Ts,
noiseVar=noiseVar,unit=unit,intNoise = intNoise)
out$type <- typecheck(out)
class(out) <- "idpoly"
return(out)
}
typecheck <- function(x){
y <- lapply(x[1:5],checkUnity)
if(y$A){
out <- if(y$C && y$D) if(y$F1) "fir" else "oe" else "bj"
} else{
if(y$D && y$F1){
if(x$intNoise){
out <- if(y$C) "ari" else "arima"
} else{
out <- if(y$C) "ar" else "arma"
}
if(!y$B) out <- paste(out,"x",sep="")
} else{
out <- "polynomial"
}
}
out
}
checkUnity <- function(x){
out <- if(length(x)==1 && x==1) TRUE else FALSE
}
#' @export
print.idpoly <- function(x,se=NULL,dig=3){
main <- paste("Discrete-time",toupper(x$type),"model:")
if(x$type=="oe" || x$type=="bj"){
main <- paste(main,"y[k] = B(z)/F(z) u[k] +")
if(x$type=="bj"){
polyExp <- if(!checkUnity(x$C)) "C(z)/D(z)" else "1/D(z)"
if(x$intNoise==T) polyExp <- paste(polyExp,"1/(1-z^{-1})")
main <- paste(main,polyExp,"e[k] \n\n")
}
} else{
main <- paste(main,"A(z)y[k] =")
if(!checkUnity(x$B)) main <- paste(main,"B(z)u[k] +")
if(checkUnity(x$C)){
Cexp <- if(!x$intNoise) "" else "1/(1-z^{-1})"
}else{
Cexp <- "C(z)"
if(x$intNoise) Cexp <- paste(Cexp,"/(1-z^{-1})",sep="")
}
main <- paste(main,Cexp,"e[k] \n\n")
}
cat(main)
# Printing Standard error sequence
j=1
print_se <- function(se){
if(!is.null(se)){
cat(" (+/- ",round(se[j],dig),") ",sep = "")
j <<- j+1
}
}
if(length(x$A)>1){
cat("A(q^{-1}) = ")
for(i in seq_along(x$A)){
if(i-1==0){
cat(round(x$A[i],dig))
} else{
if(x$A[i]>0) cat(" + ") else cat("- ")
if(!(abs(x$A[i])==1)) cat(abs(round(x$A[i],dig)))
print_se(se)
cat("q^{-",i-1,"}",sep="")
}
cat("\t")
}
cat("\n")
}
cat("B(q^{-1}) = ")
for(i in seq_along(x$B)){
if(i+x$ioDelay-1==0){
cat(round(x$B[i],dig))
} else{
if(!((x$ioDelay!=0) && (i==1))){
if(x$B[i]>0) cat(" + ") else cat("- ")
} else{
if(x$B[i]<0) cat("-")
}
if(!(abs(x$B[i])==1)) cat(abs(round(x$B[i],dig)))
print_se(se)
cat("q^{-",i+x$ioDelay-1,"}",sep="")
}
cat("\t")
}
cat("\n")
if(length(x$C)>1){
cat("C(q^{-1}) = ")
for(i in seq_along(x$C)){
if(i-1==0){
cat(round(x$C[i],dig))
} else{
if(x$C[i]>0) cat(" + ") else cat("- ")
if(!(abs(x$C[i])==1)) cat(abs(round(x$C[i],dig)))
print_se(se)
cat("q^{-",i-1,"}",sep="")
}
cat("\t")
}
cat("\n")
}
if(length(x$D)>1){
cat("D(q^{-1}) = ")
for(i in seq_along(x$D)){
if(i-1==0){
cat(round(x$D[i],dig))
} else{
if(x$D[i]>0) cat(" + ") else cat("- ")
if(!(abs(x$D[i])==1)) cat(abs(round(x$D[i],dig)))
print_se(se)
cat("q^{-",i-1,"}",sep="")
}
cat("\t")
}
cat("\n")
}
if(length(x$F1)>1){
cat("F(q^{-1}) = ")
for(i in seq_along(x$F1)){
if(i-1==0){
cat(round(x$F1[i],dig))
} else{
if(x$F1[i]>0) cat(" + ") else cat("- ")
if(!(abs(x$F1[i])==1)) cat(abs(round(x$F1[i],dig)))
print_se(se)
cat("q^{-",i-1,"}",sep="")
}
cat("\t")
}
}
cat("\n")
}
params <- function(x){
c(x$A[-1],x$B,x$C[-1],x$D[-1],x$F1[-1])
}
|