summaryrefslogtreecommitdiff
path: root/R/idframe.R
blob: 527fa210b40f1b4245892e941729300eb3778748 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#' S3 class for storing input-output data. 
#'
#' \code{idframe} is an S3 class for storing and manipulating input-ouput data. It supports discrete time and frequency domain data.
#'
#' @param output dataframe/matrix/vector containing the outputs
#' @param input dataframe/matrix/vector containing the inputs
#' @param Ts sampling interval (Default: 1)
#' @param start Time of the first observation
#' @param end Time of the last observation Optional Argument
#' @param unit Time Unit (Default: "seconds")
#'
#' @return an idframe object
#' 
#' @seealso  \code{\link{plot.idframe}}, the plot method for idframe objects, 
#' \code{\link{summary.idframe}}, the summary method for idrame objects
#' 
#' @examples
#' 
#' dataMatrix <- matrix(rnorm(1000),ncol=5) 
#' data <- idframe(output=dataMatrix[,3:5],input=dataMatrix[,1:2],Ts=1)
#' 
#' @export
idframe <- function(output=NULL,input=NULL,Ts = 1,start=0,end=NULL, 
                    unit = c("seconds","minutes","hours",
                             "days")[1]){
  
  l <- list(output,input)
  l2 <- lapply(l,data.frame)
  n <- dim(l2[[1]])
  dims <- sapply(l2,ncol)
  colnames(l2[[1]]) <- sapply(1:dims[1],
                              function(x) paste("y",x,sep = ""))
  colnames(l2[[2]]) <- sapply(1:dims[2],
                              function(x) paste("u",x,sep = "")) 
  if(!is.null(end)){
    start <- end - Ts*(n-1)
  } 
  
  l3 <- lapply(l2,ts,start=start,deltat=Ts)
  
  # Object Constructor
  dat <- list(output=l3[[1]],input=l3[[2]],unit=unit)
  class(dat) <- "idframe"
  return(dat)
}

#' Plotting idframe objects
#' 
#' Plotting method for objects inherting from class \code{idframe}
#' 
#' @param x an \code{idframe} object
#' @param col line color, to be passed to plot.(Default=\code{"steelblue"})
#' @param lwd line width, in millimeters(Default=\code{1})
#' @param main the plot title. (Default = \code{NULL})
#' 
#' @examples
#' data(cstr)
#' plot(cstr,col="blue")
#' 
#' @import ggplot2 reshape2
#' 
#' @export
plot.idframe <- function(x,col="steelblue",lwd=1,main=NULL){
    if(nInputSeries(x)==0){
      data <- outputData(x)
    } else if(nOutputSeries(x)==0){
      data <- inputData(x)
    } else{
      data <- cbind(outputData(x),inputData(x))
      colnames(data) <- c(outputNames(x),inputNames(x))
    }
    ggplot(melt(data.frame(time=as.numeric(time(data)), data), id.vars="time"), 
          aes(time, value)) + geom_line(size=lwd,color=col) +
      facet_grid(variable ~ .,scale="free") + theme_bw(14,"sans") + ylab("") +
      theme(axis.title.x=element_text(size=11)) + ggtitle(main)
}

#' @export
summary.idframe <- function(x){
  out_sum <- summary(outputData(x))
  in_sum <- summary(inputData(x))
  
  out <- list(out_sum=out_sum,in_sum=in_sum,Ts=deltat(x),
              unit=x$unit,nsample = dim(outputData(x))[1])
  
  class(out) <- "summary.idframe"
  return(out)
}

#' @export
print.summary.idframe <- function(x,...){
  cat("\t\t Number of samples:");cat(x$nsample)
  cat("\nSampling time: ")
  cat(x$Ts);cat(" ");cat(x$unit)
  
  cat("\n\n")
  cat("Outputs \n")
  print(x$out_sum)
  cat("\n")
  
  cat("Inputs \n")
  print(x$in_sum)
}

#' @export
time.idframe <- function(data){
  time(data$output)
}

#' @export
frequency.idframe <- function(data){
  frequency(data$output)
}

#' @export
deltat.idframe <- function(data){
  deltat(data$output)
}

#' S3 class constructor for storing frequency response data
#' 
#' @param respData frequency response data. For SISO systems, supply a 
#' vector of frequency response values. For MIMO systems with Ny 
#' outputs and Nu inputs, supply an array of size c(Ny,Nu,Nw).
#' @param freq frequency points of the response
#' @param Ts sampling time of data
#' @param spec power spectra and cross spectra of the system 
#' output disturbances (noise). Supply an array of size (Ny,Ny,Nw)
#' @param covData response data covariance matrices. Supply an array
#' of size (Ny,Nu,Nw,2,2). covData[ky,ku,kw,,] is the covariance matrix
#' of respData[ky,ku,kw]
#' @param noiseCov power spectra variance. Supply an array of 
#' size (Ny,Ny,Nw)
#' 
#' @return an idfrd object
#' 
#' @seealso
#' \code{\link{plot.idfrd}} for generating bode plots, 
#' \code{\link{spa}} and \code{\link{etfe}} for estimating the 
#' frequency response given input/output data
#' 
#' @export
idfrd <- function(respData,freq,Ts,spec=NULL,covData=NULL,
                  noiseCov=NULL){
  # For SISO systems
  if(is.vector(respData)){
    dim(respData) <- c(1,1,nrow(freq))
    dim(spec) <- c(1,1,nrow(freq))
  }
  
  out <- list(response=respData,freq=freq,Ts=Ts,spec=spec,covData=
                covData,noiseCov = noiseCov)
  class(out) <- "idfrd"
  return(out)
}

#' Plotting idfrd objects
#' 
#' Generates the bode plot of the given frequency response data. It uses the
#' ggplot2 plotting engine
#' 
#' @param x An object of class \code{idframe}
#' 
#' @seealso \code{\link[ggplot2]{ggplot}}
#' 
#' @examples
#' data(frf)
#' frf <- spa(data) # Estimates the frequency response from data
#' plot(frf)
#' 
#' @import ggplot2 reshape2 signal
#' 
#' @export
plot.idfrd <- function(x,col="steelblue",lwd=1){
  nfreq <- dim(x$freq)[1]
  mag <- 20*log10(Mod(x$resp))
  nout <- dim(mag)[1]; nin <- dim(mag)[2]
  dim(mag) <- c(nin*nout,nfreq)
  
  temp <- aperm(Arg(x$resp),c(3,2,1));dim(temp) <- c(nfreq,4)
  l <- t(split(temp, rep(1:ncol(temp), each = nrow(temp))))
  phase <- 180/pi*t(sapply(l,signal::unwrap))

  g <- vector("list",nin*nout)
  
  for(i in 1:length(g)){
    df <- data.frame(Frequency=x$freq[,],Magnitude=mag[i,],
                     Phase = phase[i,])
    melt_df <- reshape2::melt(df,id.var="Frequency")
    yindex <- (i-1)%/%nin + 1;uindex <- i-nin*(yindex-1)
    subtitle <- paste("From: u",uindex," to y",yindex,sep="")
    g[[i]] <- ggplot(melt_df, aes(Frequency, value)) + 
      geom_line(size=lwd,color=col) + scale_x_log10() + 
      facet_grid(variable ~ .,scale="free_y") +
      theme_bw(14,"sans") + ylab("") + ggtitle(subtitle) +
      xlab(ifelse(yindex==nout,"Frequency","")) + 
      theme(axis.title.x=element_text(color = "black",face = "plain"),
            title=element_text(size=9,color = "gray",face="bold")) + 
      geom_vline(xintercept=max(x$freq),size=1)
  }
  
  multiplot(plotlist=g,layout=matrix(1:length(g),nrow=nout,byrow=T))
}

# Multiple plot function
#
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# - cols:   Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
#
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
#
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
  library(grid)
  
  # Make a list from the ... arguments and plotlist
  plots <- c(list(...), plotlist)
  
  numPlots = length(plots)
  
  # If layout is NULL, then use 'cols' to determine layout
  if (is.null(layout)) {
    # Make the panel
    # ncol: Number of columns of plots
    # nrow: Number of rows needed, calculated from # of cols
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
                     ncol = cols, nrow = ceiling(numPlots/cols))
  }
  
  if (numPlots==1) {
    print(plots[[1]])
    
  } else {
    # Set up the page
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
    
    # Make each plot, in the correct location
    for (i in 1:numPlots) {
      # Get the i,j matrix positions of the regions that contain this subplot
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
      
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                      layout.pos.col = matchidx$col))
    }
  }
}