1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
#' @export
estpoly <- function(sys,fitted.values,residuals,options=NULL,
call,stats,termination=NULL,input){
out <- list(sys=sys,fitted.values=fitted.values,
residuals=residuals,input=input,call=call,
stats=stats,options=options,termination=termination)
class(out) <- "estpoly"
out
}
#' @export
print.estpoly <- function(x,...){
print(summary(x),...)
}
#' @export
summary.estpoly <- function(x)
{
model <- x$sys
coefs <- params(model)
se <- sqrt(diag(getcov(x)))
params <- data.frame(Estimated=coefs,se=se)
report <- list(fit=fitch(x),params=params)
res <- list(model=model,report=report)
class(res) <- "summary.estpoly"
res
}
#' Fit Characteristics
#'
#' Returns quantitative assessment of the estimated model as a list
#'
#' @param x the estimated model
#'
#' @return
#' A list containing the following elements
#'
#' \item{MSE}{Mean Square Error measure of how well the response of the model fits
#' the estimation data}
#' \item{FPE}{Final Prediction Error}
#' \item{FitPer}{Normalized root mean squared error (NRMSE) measure of how well the
#' response of the model fits the estimation data, expressed as a percentage.}
#' \item{AIC}{Raw Akaike Information Citeria (AIC) measure of model quality}
#' \item{AICc}{Small sample-size corrected AIC}
#' \item{nAIC}{Normalized AIC}
#' \item{BIC}{Bayesian Information Criteria (BIC)}
#'
#' @export
fitch <- function(x){
y <- fitted(x) + resid(x)
ek <- as.matrix(resid(x))
N <- nrow(ek); np <- length(params(x$sys))
# fit characteristics
mse <- det(t(ek)%*%ek)/N
fpe <- mse*(1+np/N)/(1-np/N)
nrmse <- 1 - sqrt(sum(ek^2))/sqrt(sum((y-mean(y))^2))
AIC <- N*log(mse) + 2*np + N*dim(matrix(y))[2]*(log(2*pi)+1)
AICc <- AIC*2*np*(np+1)/(N-np-1)
nAIC <- log(mse) + 2*np/N
BIC <- N*log(mse) + N*dim(matrix(y))[2]*(log(2*pi)+1) + np*log(N)
list(MSE=mse,FPE=fpe,FitPer = nrmse*100,AIC=AIC,AICc=AICc,nAIC=nAIC,BIC=BIC)
}
#' @export
print.summary.estpoly <- function(x,digits=4){
print(x$model,se=x$report$params[,2],dig=digits)
cat("\n Fit Characteristics \n")
print(data.frame(x$report$fit),digits=digits)
}
#' @export
plot.estpoly <- function(model,newdata=NULL){
require(ggplot2)
if(is.null(newdata)){
ypred <- ts(fitted(model),names="Predicted")
yact <- ts(fitted(model) + resid(model),names="Actual")
time <- time(model$input)
titstr <- "Predictions of Model on Training Set"
} else{
if(class(newdata)!="idframe") stop("Only idframe objects allowed")
ypred <- predict(model,newdata)
yact <- outputData(newdata)[,1]
time <- time(newdata)
titstr <- "Predictions of Model on Test Set"
}
df <- data.frame(Predicted=ypred,Actual=yact,Time=time)
ggplot(df, aes(x = Actual,y=Predicted)) + ggtitle(titstr) +
geom_abline(intercept=0,slope=1,colour="#D55E00") + geom_point()
}
#' @export
residplot <- function(model,newdata=NULL){
if(is.null(newdata)){
e <- resid(model); u <- model$input
} else{
if(class(newdata)!="idframe") stop("Only idframe objects allowed")
e <- newdata$output[,1] - predict(model,newdata)[,1]
u <- newdata$input
}
e <- matrix(e)
acorr <- acf(e[,],plot = F); ccorr <- ccf(u[,1],e[,],plot = F)
par(mfrow=c(2,1),mar=c(3,4,3,2))
plot(acorr,ci=0.99,main="ACF of residuals")
plot(ccorr,ci=0.99,main="CCF between the input and residuals",ylab="CCF")
}
#' Estimate ARX Models
#'
#' Fit an ARX model of the specified order given the input-output data
#'
#' @param x an object of class \code{idframe}
#' @param order Specification of the orders: the three integer components
#' (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and
#' the input-output delay
#' @param lambda Regularization parameter(Default=\code{0.1})
#' @param intNoise Logical variable indicating whether to add integrators in
#' the noise channel (Default=\code{FALSE})
#'
#' @details
#' SISO ARX models are of the form
#' \deqn{
#' y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] +
#' \ldots + b_{nk+nb} u[k-nk-nb] + e[k]
#' }
#' The function estimates the coefficients using linear least squares (with
#' regularization).
#' \cr
#' The data is expected to have no offsets or trends. They can be removed
#' using the \code{\link{detrend}} function.
#'
#' @return
#' An object of class \code{estpoly} containing the following elements:
#' \item{sys}{an \code{idpoly} object containing the
#' fitted ARX coefficients}
#' \item{fitted.values}{the predicted response}
#' \item{residuals}{the residuals}
#' \item{input}{the input data used}
#' \item{call}{the matched call}
#' \item{stats}{A list containing the following fields: \cr
#' \code{vcov} - the covariance matrix of the fitted coefficients \cr
#' \code{sigma} - the standard deviation of the innovations\cr
#' \code{df} - the residual degrees of freedom}
#'
#'
#' @references
#' Arun K. Tangirala (2015), \emph{Principles of System Identification:
#' Theory and Practice}, CRC Press, Boca Raton. Section 21.6.1
#'
#' Lennart Ljung (1999), \emph{System Identification: Theory for the User},
#' 2nd Edition, Prentice Hall, New York. Section 10.1
#'
#' @examples
#' data(arxsim)
#' model <- arx(data,c(2,1,1))
#' model
#' plot(model) # plot the predicted and actual responses
#'
#' @export
arx <- function(x,order=c(1,1,1),lambda=0.1,intNoise=FALSE){
y <- outputData(x); u <- inputData(x); N <- dim(y)[1]
if(intNoise){
y <- apply(y,2,integfilter)
u <- apply(u,2,integfilter)
}
na <- order[1];nb <- order[2]; nk <- order[3]
nb1 <- nb+nk-1 ; n <- max(na,nb1); df <- N-na-nb
yout <- apply(y,2,padZeros,n=n);
uout <- apply(u,2,padZeros,n=n);
reg <- function(i) {
if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1
c(-yout[i-1:na,,drop=T],uout[v,,drop=T])
}
X <- t(sapply(n+1:(N+n),reg))
Y <- yout[n+1:(N+n),,drop=F]
# lambda <- 0.1
inner <- t(X)%*%X + lambda*diag(dim(X)[2])
innerinv <- solve(inner)
pinv <- innerinv%*% t(X)
coef <- pinv%*%Y
sigma2 <- sum((Y-X%*%coef)^2)/(df+n)
vcov <- sigma2 * innerinv
fit <- (X%*%coef)[1:N,,drop=F]
if(intNoise) fit <- apply(fit,2,cumsum)
model <- idpoly(A = c(1,coef[1:na]),B = coef[na+1:nb],
ioDelay = nk,Ts=deltat(x),noiseVar = sqrt(sigma2),
intNoise=intNoise,unit=x$unit)
estpoly(sys = model,stats=list(vcov = vcov, sigma = sqrt(sigma2),
df = df),fitted.values=fit,residuals=(Y-X%*%coef)[1:N,,drop=F],
call=match.call(),input=u)
}
#' Estimate ARMAX Models
#'
#' Fit an ARMAX model of the specified order given the input-output data
#'
#' @param x an object of class \code{idframe}
#' @param order Specification of the orders: the four integer components
#' (na,nb,nc,nk) are the order of polynolnomial A, order of polynomial B
#' + 1, order of the polynomial C,and the input-output delay respectively
#' @param init_sys Linear polynomial model that configures the initial parameterization.
#' Must be an ARMAX model. Overrules the \code{order} argument
#' @param options Estimation Options, setup using \code{\link{optimOptions}}
#'
#' @details
#' SISO ARMAX models are of the form
#' \deqn{
#' y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] +
#' \ldots + b_{nk+nb} u[k-nk-nb] + c_{1} e[k-1] + \ldots c_{nc} e[k-nc]
#' + e[k]
#' }
#' The function estimates the coefficients using non-linear least squares
#' (Levenberg-Marquardt Algorithm)
#' \cr
#' The data is expected to have no offsets or trends. They can be removed
#' using the \code{\link{detrend}} function.
#'
#' @return
#' An object of class \code{estpoly} containing the following elements:
#' \item{sys}{an \code{idpoly} object containing the
#' fitted ARMAX coefficients}
#' \item{fitted.values}{the predicted response}
#' \item{residuals}{the residuals}
#' \item{input}{the input data used}
#' \item{call}{the matched call}
#' \item{stats}{A list containing the following fields: \cr
#' \code{vcov} - the covariance matrix of the fitted coefficients \cr
#' \code{sigma} - the standard deviation of the innovations}
#' \item{options}{Option set used for estimation. If no
#' custom options were configured, this is a set of default options}
#' \item{termination}{Termination conditions for the iterative
#' search used for prediction error minimization:
#' \code{WhyStop} - Reason for termination \cr
#' \code{iter} - Number of Iterations \cr
#' \code{iter} - Number of Function Evaluations }
#'
#'
#' @references
#' Arun K. Tangirala (2015), \emph{Principles of System Identification:
#' Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 21.6.2
#'
#' @examples
#' data(armaxsim)
#' z <- dataSlice(data,end=1533) # training set
#' mod_armax <- armax(z,c(1,2,1,2))
#' mod_armax
#'
#' @export
armax <- function(x,order=c(0,1,1,0),init_sys=NULL,options=optimOptions()){
y <- outputData(x); u <- inputData(x); N <- dim(y)[1]
if(!is.null(init_sys)){
checkInitSys(init_sys)
# Extract orders from initial guess
na <- length(init_sys$A) -1;nb <- length(init_sys$B);
nc <- length(init_sys$C) -1;nk <- init_sys$ioDelay
order <- c(na,nb,nc,nk)
# Initial guess
theta0 <- matrix(params(init_sys))
ivs <- matrix(predict(init_sys,x))
e_init <- y-ivs
} else{
na <- order[1];nb <- order[2]; nc <- order[3]; nk <- order[4]
if(nc<1)
stop("Error: Not an ARMAX model")
# Initial Parameter Estimates
mod_arx <- iv4(x,c(na,nb,nk)) # fitting ARX model
eps_init <- matrix(resid(mod_arx))
mod_ma <- arima(eps_init,order=c(0,0,nc),include.mean = F)
e_init <- matrix(mod_ma$residuals); e_init[is.na(e_init)] <- 0
theta0 <- matrix(c(mod_arx$sys$A[-1],mod_arx$sys$B,mod_ma$coef))
}
nb1 <- nb+nk-1 ; n <- max(na,nb1,nc); df <- N - na - nb - nc
l <- levbmqdt(y,u,order,e_init,obj=armaxGrad,
theta0=theta0,N=N,opt=options)
theta <- l$params
e <- ts(l$residuals,start = start(y),deltat = deltat(y))
model <- idpoly(A = c(1,theta[1:na]),B = theta[na+1:nb],
C = c(1,theta[na+nb+1:nc]),ioDelay = nk,Ts=deltat(x),
noiseVar = l$sigma,unit=x$unit)
estpoly(sys = model,stats=list(vcov = l$vcov, sigma = l$sigma),
fitted.values=y-e,residuals=e,call=match.call(),input=u,
options = options,termination = l$termination)
}
#' Estimate Output-Error Models
#'
#' Fit an output-error model of the specified order given the input-output data
#'
#' @param x an object of class \code{idframe}
#' @param order Specification of the orders: the four integer components
#' (nb,nf,nk) are order of polynomial B + 1, order of the polynomial F,
#' and the input-output delay respectively
#' @param init_sys Linear polynomial model that configures the initial parameterization.
#' Must be an OE model. Overrules the \code{order} argument
#' @param options Estimation Options, setup using
#' \code{\link{optimOptions}}
#'
#' @details
#' SISO OE models are of the form
#' \deqn{
#' y[k] + f_1 y[k-1] + \ldots + f_{nf} y[k-nf] = b_{nk} u[k-nk] +
#' \ldots + b_{nk+nb} u[k-nk-nb] + f_{1} e[k-1] + \ldots f_{nf} e[k-nf]
#' + e[k]
#' }
#' The function estimates the coefficients using non-linear least squares
#' (Levenberg-Marquardt Algorithm)
#' \cr
#' The data is expected to have no offsets or trends. They can be removed
#' using the \code{\link{detrend}} function.
#'
#' @return
#' An object of class \code{estpoly} containing the following elements:
#' \item{sys}{an \code{idpoly} object containing the
#' fitted OE coefficients}
#' \item{fitted.values}{the predicted response}
#' \item{residuals}{the residuals}
#' \item{input}{the input data used}
#' \item{call}{the matched call}
#' \item{stats}{A list containing the following fields: \cr
#' \code{vcov} - the covariance matrix of the fitted coefficients \cr
#' \code{sigma} - the standard deviation of the innovations}
#' \item{options}{Option set used for estimation. If no
#' custom options were configured, this is a set of default options}
#' \item{termination}{Termination conditions for the iterative
#' search used for prediction error minimization:
#' \code{WhyStop} - Reason for termination \cr
#' \code{iter} - Number of Iterations \cr
#' \code{iter} - Number of Function Evaluations }
#'
#' @references
#' Arun K. Tangirala (2015), \emph{Principles of System Identification:
#' Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2,
#' 21.6.3
#'
#' @examples
#' data(oesim)
#' z <- dataSlice(data,end=1533) # training set
#' mod_oe <- oe(z,c(2,1,2))
#' mod_oe
#' plot(mod_oe) # plot the predicted and actual responses
#'
#' @export
oe <- function(x,order=c(1,1,0),init_sys=NULL,options=optimOptions()){
y <- outputData(x); u <- inputData(x); N <- dim(y)[1]
if(!is.null(init_sys)){
checkInitSys(init_sys)
# Extract orders from initial guess
nb <- length(init_sys$B); nf <- length(init_sys$F1) -1
nk <- init_sys$ioDelay;order <- c(nb,nf,nk)
# Initial guess
theta0 <- matrix(params(init_sys))
ivs <- matrix(predict(init_sys,x))
e_init <- y-ivs
} else{
nb <- order[1];nf <- order[2]; nk <- order[3];
nb1 <- nb+nk-1 ; n <- max(nb1,nf);
if(nf<1)
stop("Not an OE model")
# Initial Model
mod_arx <- iv4(x,c(nf,nb,nk)) # fitting ARX model
wk <- resid(mod_arx)
e_init <- as.numeric(stats::filter(wk,filter=-mod_arx$sys$A[-1],
method = "recursive"))
ivs <- y-e_init
theta0 <- matrix(c(mod_arx$sys$B,mod_arx$sys$A[-1]))
}
nb1 <- nb+nk-1 ; n <- max(nb1,nf);df <- N - nb - nf
l <- levbmqdt(y,u,order,ivs,obj=oeGrad,theta0=theta0,N=N,
opt=options)
theta <- l$params
e <- ts(l$residuals,start = start(y),deltat = deltat(y))
model <- idpoly(B = theta[1:nb],F1 = c(1,theta[nb+1:nf]),
ioDelay = nk,Ts=deltat(x),noiseVar = l$sigma,unit=x$unit)
estpoly(sys = model,stats=list(vcov = l$vcov, sigma = l$sigma),
fitted.values=y-e,residuals=e,call=match.call(),input=u,
options = options,termination = l$termination)
}
#' Estimate Box-Jenkins Models
#'
#' Fit a box-jenkins model of the specified order from input-output data
#'
#' @param z an \code{idframe} object containing the data
#' @param order Specification of the orders: the five integer components
#' (nb,nc,nd,nf,nk) are order of polynomial B + 1, order of the polynomial C,
#' order of the polynomial D, order of the polynomial F, and the
#' input-output delay respectively
#' @param init_sys Linear polynomial model that configures the initial parameterization.
#' Must be a BJ model. Overrules the \code{order} argument
#' @param options Estimation Options, setup using
#' \code{\link{optimOptions}}
#'
#' @details
#' SISO BJ models are of the form
#' \deqn{
#' y[k] = \frac{B(q^{-1})}{F(q^{-1})}u[k-nk] +
#' \frac{C(q^{-1})}{D(q^{-1})} e[k]
#' }
#' The orders of Box-Jenkins model are defined as follows:
#' \deqn{
#' B(q^{-1}) = b_1 + b_2q^{-1} + \ldots + b_{nb} q^{-nb+1}
#' }
#'
#' \deqn{
#' C(q^{-1}) = 1 + c_1q^{-1} + \ldots + c_{nc} q^{-nc}
#' }
#'
#' \deqn{
#' D(q^{-1}) = 1 + d_1q^{-1} + \ldots + d_{nd} q^{-nd}
#' }
#' \deqn{
#' F(q^{-1}) = 1 + f_1q^{-1} + \ldots + f_{nf} q^{-nf}
#' }
#'
#' The function estimates the coefficients using non-linear least squares
#' (Levenberg-Marquardt Algorithm)
#' \cr
#' The data is expected to have no offsets or trends. They can be removed
#' using the \code{\link{detrend}} function.
#'
#' @return
#' An object of class \code{estpoly} containing the following elements:
#' \item{sys}{an \code{idpoly} object containing the
#' fitted BJ coefficients}
#' \item{fitted.values}{the predicted response}
#' \item{residuals}{the residuals}
#' \item{input}{the input data used}
#' \item{call}{the matched call}
#' \item{stats}{A list containing the following fields: \cr
#' \code{vcov} - the covariance matrix of the fitted coefficients \cr
#' \code{sigma} - the standard deviation of the innovations}
#' \item{options}{Option set used for estimation. If no
#' custom options were configured, this is a set of default options}
#' \item{termination}{Termination conditions for the iterative
#' search used for prediction error minimization:
#' \code{WhyStop} - Reason for termination \cr
#' \code{iter} - Number of Iterations \cr
#' \code{iter} - Number of Function Evaluations }
#'
#' @references
#' Arun K. Tangirala (2015), \emph{Principles of System Identification:
#' Theory and Practice}, CRC Press, Boca Raton. Sections 14.4.1, 17.5.2,
#' 21.6.3
#'
#' @examples
#' data(bjsim)
#' z <- dataSlice(data,end=1500) # training set
#' mod_bj <- bj(z,c(2,1,1,1,2))
#' mod_bj
#' residplot(mod_bj) # residual plots
#'
#' @export
bj <- function(z,order=c(1,1,1,1,0),
init_sys=NULL,options=optimOptions()){
y <- outputData(z); u <- inputData(z); N <- dim(y)[1]
if(!is.null(init_sys)){
checkInitSys(init_sys)
# Extract orders from initial guess
nb <- length(init_sys$B); nf <- length(init_sys$F1) -1
nc <- length(init_sys$C) -1;nd <- length(init_sys$d) -1
nk <- init_sys$ioDelay;order <- c(nb,nc,nd,nf,nk)
# Initial guess
theta0 <- matrix(params(init_sys))
ivs <- matrix(predict(init_sys,x))
e_init <- y-ivs
} else{
nb <- order[1];nc <- order[2]; nd <- order[3];
nf <- order[4]; nk <- order[5];
if(nc==0 && nd==0){
oe(z,c(nb,nf,nk))
} else{
# Initial Guess
mod_oe <- oe(z,c(nb,nf,nk))
v <- resid(mod_oe); zeta <- matrix(predict(mod_oe))
mod_arma <- arima(v,order=c(nd,0,nc),include.mean = F)
C_params <- if(nc==0) NULL else coef(mod_arma)[nd+1:nc]
theta0 <- matrix(c(mod_oe$sys$B,C_params,
-coef(mod_arma)[1:nd],mod_oe$sys$F1[-1]))
eps <- matrix(resid(mod_arma))
}
}
l <- levbmqdt(y,u,order,zeta,eps,obj=bjGrad,theta0=theta0,N=N,
opt=options)
theta <- l$params
e <- ts(l$residuals,start = start(y),deltat = deltat(y))
C_params <- if(nc==0) NULL else theta[nb+1:nc]
model <- idpoly(B = theta[1:nb],C=c(1,C_params),
D=c(1,theta[nb+nc+1:nd]),
F1 = c(1,theta[nb+nc+nd+1:nf]),
ioDelay = nk,Ts=deltat(z),noiseVar = l$sigma,unit=z$unit)
estpoly(sys = model,stats=list(vcov = l$vcov, sigma = l$sigma),
fitted.values=y-e,residuals=e,call=match.call(),input=u,
options = options,termination = l$termination)
}
|