1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
#' @export
plot.estPoly <- function(model,newdata=NULL){
require(ggplot2)
require(reshape2)
if(is.null(newdata)){
ypred <- fitted(model)
yact <- fitted(model) + resid(model)
time <- model$time
} else{
if(class(newdata)!="idframe") stop("Only idframe objects allowed")
ypred <- sim(coef(model),newdata$input[,1,drop=F])
yact <- newdata$output[,1,drop=F]
time <- seq(from=newdata$t.start,to=newdata$t.end,by=newdata$Ts)
}
df <- data.frame(Predicted=ypred,Actual=yact,Time=time)
meltdf <- melt(df,id="Time")
ggplot(meltdf, aes(x = Time,y=value,colour=variable,group=variable)) +
geom_line() + theme_bw()
}
#' Estimate ARX Models
#'
#' @export
estARX <- function(data,order=c(0,1,0)){
y <- as.matrix(data$output)
u <- as.matrix(data$input); N <- dim(y)[1]
na <- order[1];nb <- order[2]; nk <- order[3]
nb1 <- nb+nk; n <- max(na,nb1); df <- N - na - nb -nk
padZeros <- function(x,n) c(rep(0,n),x,rep(0,n))
yout <- apply(y,2,padZeros,n=n);
uout <- apply(u,2,padZeros,n=n);
reg <- function(i) cbind(-yout[i-1:na,],uout[i-nk:nb1])
X <- t(sapply(n+1:(N+n),reg))
Y <- yout[n+1:(N+n),,drop=F]
qx <- qr(X); coef <- qr.solve(qx,Y)
sigma2 <- sum((Y-X%*%coef)^2)/df
vcov <- sigma2 * chol2inv(qx$qr)
model <- arx(A = c(1,coef[1:na]),B = coef[na+1:nb1],ioDelay = nk)
time <- seq(from=data$t.start,to=data$t.end,by=data$Ts)
est <- list(coefficients = model,vcov = vcov, sigma = sqrt(sigma2),
df = df,fitted.values=(X%*%coef)[1:N,],
residuals=(Y-X%*%coef)[1:N,],call=match.call(),
time=time)
class(est) <- c("estARX","estPoly")
est
}
#' @export
predict.estARX <- function(model,newdata=NULL){
if(is.null(newdata)){
return(fitted(model))
} else{
return(sim(coef(model),newdata))
}
}
#' @export
summary.estARX <- function(object)
{
coefs <- c(coef(object)$A[-1],coef(object)$B)
se <- sqrt(diag(object$vcov))
tval <- coefs / se
TAB <- cbind(Estimate = coefs,
StdErr = se,
t.value = tval,
p.value = 2*pt(-abs(tval), df=object$df))
na <- length(coef(object)$A) - 1; nk <- coef(object)$ioDelay;
nb <- length(coef(object)$B) - nk
rownames(TAB) <- rep("a",nrow(TAB))
for(i in 1:na) rownames(TAB)[i] <- paste("a",i,sep="")
for(j in (na+1):nrow(TAB)) {
rownames(TAB)[j] <- paste("b",j-na-1+nk,sep="")
}
res <- list(call=object$call,coefficients=TAB,sigma=object$sigma,
df=object$df)
class(res) <- "summary.estARX"
res
}
#' @export
print.summary.estARX <- function(object){
cat("Discrete-time ARX model: A(q^{-1})y[k] = B(q^{-1})u[k] + e[k] \n")
cat("Call: ");print(object$call);cat("\n\n")
print(coef(object))
cat(paste("\nsigma:",format(object$sigma,digits=4)))
cat(paste("\nDoF:",object$df))
}
|