1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
armaxGrad <- function(theta,e,dots){
y <- dots[[1]]; u <- dots[[2]]; order <- dots[[3]]; N <- dots[[4]]
na <- order[1];nb <- order[2]; nc <- order[3]; nk <- order[4]
nb1 <- nb+nk-1 ; n <- max(na,nb1,nc)
if(is.null(e)){
eout <- matrix(rep(0,N+2*n))
} else{
eout <- matrix(c(rep(0,n),e[,]))
}
reg <- function(i) {
if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1
matrix(c(-y[i-1:na,],u[v,],eout[i-1:nc,]))
}
X <- t(sapply(n+1:(N+n),reg))
Y <- y[n+1:(N+n),,drop=F]
l <- list(X=X,Y=Y)
if(!is.null(e)){
filt1 <- Arma(b=1,a=c(1,theta[(na+nb+1:nc)]))
grad <- apply(X,2,filter,filt=filt1)
l$grad <- grad
}
return(l)
}
# Implementation of the Levenberg Marquardt Algorithm
levbmqdt <- function(...,obj,theta0,N,opt=optimOptions()){
dots <- list(...)
# Optimization Parameters
tol <- opt$tol; maxIter <- opt$maxIter
d <- opt$adv$LMinit; mu <- opt$adv$LMstep
df <- N - dim(theta0)[1]
# Initialize Algorithm
i <- 0
l <- obj(theta=theta0,e=NULL,dots)
e <- l$Y-l$X%*%theta0
sumsq0 <- sum(e^2)
# parameter indicating whether to update gradient in the iteration
update <- 1
# variable to count the number of times objective function is called
countObj <- 0
repeat{
i=i+1
if(update ==1){
countObj <- countObj+1
# Update gradient
l <- obj(theta0,e,dots)
}
# Update Parameters
H <- 1/N*(t(l$grad)%*%l$grad) + d*diag(dim(theta0)[1])
Hinv <- solve(H)
theta <- theta0 + 1/N*Hinv%*%t(l$grad)%*%e
# Update residuals
e <- l$Y-l$X%*%theta
sumsq <- sum(e^2)
sumSqRatio <- (sumsq0-sumsq)/sumsq0*100
# If sum square error with the updated parameters is less than the
# previous one, the updated parameters become the current parameters
# and the damping coefficient is reduced by a factor of mu
if(sumSqRatio > 0){
d <- d/mu
theta0 <- theta
sumsq0 <- sumsq
update <- 1
} else{ # increase damping coefficient by a factor of mu
d <- d*mu
update <- 0
}
if((sumSqRatio < tol) || (i == maxIter)){
break
}
}
if(sumSqRatio < tol){
WhyStop <- "Tolerance"
} else{
WhyStop <- "Maximum Iteration Limit"
}
e <- e[1:N,]
sigma2 <- sum(e^2)/df
vcov <- sigma2 * Hinv
list(params=theta,residuals=e,vcov=vcov,sigma = sqrt(sigma2),
termination=list(WhyStop=WhyStop,iter=i,FcnCount = countObj))
}
#' @export
optimOptions <- function(tol=0.01,maxIter=20,LMinit=10,LMstep=2){
return(list(tol=tol,maxIter= maxIter, adv= list(LMinit=LMinit,
LMstep=LMstep)))
}
#' @export
getcov <- function(sys){
sys$stats$vcov
}
|