diff options
Diffstat (limited to 'R')
-rw-r--r-- | R/estpoly.R | 21 |
1 files changed, 15 insertions, 6 deletions
diff --git a/R/estpoly.R b/R/estpoly.R index 661306e..814b225 100644 --- a/R/estpoly.R +++ b/R/estpoly.R @@ -115,9 +115,12 @@ residplot <- function(model,newdata=NULL){ #' Fit an ARX model of the specified order given the input-output data #' #' @param x an object of class \code{idframe} -#' @param order: Specification of the orders: the three integer components +#' @param order Specification of the orders: the three integer components #' (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and #' the input-output delay +#' @param lambda Regularization parameter(Default=\code{0.1}) +#' @param intNoise Logical variable indicating whether to add integrators in +#' the noise channel (Default=\code{FALSE}) #' #' @details #' SISO ARX models are of the form @@ -159,12 +162,15 @@ residplot <- function(model,newdata=NULL){ #' plot(model) # plot the predicted and actual responses #' #' @export -arx <- function(x,order=c(0,1,0),lambda=0.1){ +arx <- function(x,order=c(1,1,1),lambda=0.1,intNoise=FALSE){ y <- outputData(x); u <- inputData(x); N <- dim(y)[1] + if(intNoise){ + y <- apply(y,2,integfilter) + u <- apply(u,2,integfilter) + } na <- order[1];nb <- order[2]; nk <- order[3] nb1 <- nb+nk-1 ; n <- max(na,nb1); df <- N-na-nb - padZeros <- function(x,n) c(rep(0,n),x,rep(0,n)) yout <- apply(y,2,padZeros,n=n); uout <- apply(u,2,padZeros,n=n); @@ -183,13 +189,16 @@ arx <- function(x,order=c(0,1,0),lambda=0.1){ sigma2 <- sum((Y-X%*%coef)^2)/(df+n) vcov <- sigma2 * innerinv + fit <- (X%*%coef)[1:N,,drop=F] + if(intNoise) fit <- apply(fit,2,cumsum) model <- idpoly(A = c(1,coef[1:na]),B = coef[na+1:nb], - ioDelay = nk,Ts=deltat(x),noiseVar = sqrt(sigma2),unit=x$unit) + ioDelay = nk,Ts=deltat(x),noiseVar = sqrt(sigma2), + intNoise=intNoise,unit=x$unit) estpoly(sys = model,stats=list(vcov = vcov, sigma = sqrt(sigma2), - df = df),fitted.values=(X%*%coef)[1:N,], - residuals=(Y-X%*%coef)[1:N,],call=match.call(),input=u) + df = df),fitted.values=fit,residuals=(Y-X%*%coef)[1:N,,drop=F], + call=match.call(),input=u) } #' Estimate ARMAX Models |