summaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
Diffstat (limited to 'R')
-rw-r--r--R/estpoly.R21
1 files changed, 15 insertions, 6 deletions
diff --git a/R/estpoly.R b/R/estpoly.R
index 661306e..814b225 100644
--- a/R/estpoly.R
+++ b/R/estpoly.R
@@ -115,9 +115,12 @@ residplot <- function(model,newdata=NULL){
#' Fit an ARX model of the specified order given the input-output data
#'
#' @param x an object of class \code{idframe}
-#' @param order: Specification of the orders: the three integer components
+#' @param order Specification of the orders: the three integer components
#' (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and
#' the input-output delay
+#' @param lambda Regularization parameter(Default=\code{0.1})
+#' @param intNoise Logical variable indicating whether to add integrators in
+#' the noise channel (Default=\code{FALSE})
#'
#' @details
#' SISO ARX models are of the form
@@ -159,12 +162,15 @@ residplot <- function(model,newdata=NULL){
#' plot(model) # plot the predicted and actual responses
#'
#' @export
-arx <- function(x,order=c(0,1,0),lambda=0.1){
+arx <- function(x,order=c(1,1,1),lambda=0.1,intNoise=FALSE){
y <- outputData(x); u <- inputData(x); N <- dim(y)[1]
+ if(intNoise){
+ y <- apply(y,2,integfilter)
+ u <- apply(u,2,integfilter)
+ }
na <- order[1];nb <- order[2]; nk <- order[3]
nb1 <- nb+nk-1 ; n <- max(na,nb1); df <- N-na-nb
- padZeros <- function(x,n) c(rep(0,n),x,rep(0,n))
yout <- apply(y,2,padZeros,n=n);
uout <- apply(u,2,padZeros,n=n);
@@ -183,13 +189,16 @@ arx <- function(x,order=c(0,1,0),lambda=0.1){
sigma2 <- sum((Y-X%*%coef)^2)/(df+n)
vcov <- sigma2 * innerinv
+ fit <- (X%*%coef)[1:N,,drop=F]
+ if(intNoise) fit <- apply(fit,2,cumsum)
model <- idpoly(A = c(1,coef[1:na]),B = coef[na+1:nb],
- ioDelay = nk,Ts=deltat(x),noiseVar = sqrt(sigma2),unit=x$unit)
+ ioDelay = nk,Ts=deltat(x),noiseVar = sqrt(sigma2),
+ intNoise=intNoise,unit=x$unit)
estpoly(sys = model,stats=list(vcov = vcov, sigma = sqrt(sigma2),
- df = df),fitted.values=(X%*%coef)[1:N,],
- residuals=(Y-X%*%coef)[1:N,],call=match.call(),input=u)
+ df = df),fitted.values=fit,residuals=(Y-X%*%coef)[1:N,,drop=F],
+ call=match.call(),input=u)
}
#' Estimate ARMAX Models