summaryrefslogtreecommitdiff
path: root/R/demean.R
diff options
context:
space:
mode:
Diffstat (limited to 'R/demean.R')
-rw-r--r--R/demean.R70
1 files changed, 0 insertions, 70 deletions
diff --git a/R/demean.R b/R/demean.R
deleted file mode 100644
index 7759b08..0000000
--- a/R/demean.R
+++ /dev/null
@@ -1,70 +0,0 @@
-#' Mean-Center the data
-#'
-#' Mean Centers the input and output matrices.
-#'
-#' @param data an object of class \code{idframe}
-#'
-#' @return
-#' A list containing the following elements
-#'
-#' \tabular{ll}{
-#' \code{fitted.values} \tab \code{idframe} object with mean-centered variables \cr
-#' \code{output.mean} \tab \code{vector} containing means for each output variable \cr
-#' \code{input.mean} \tab \code{vector} containing means for each input variable
-#' }
-#'
-#' @examples
-#' data(cstr)
-#' fit.mean <- demean(cstr)
-#' cstr_demean <- predict(fit.mean)
-#'
-#' @seealso \code{\link{predict.demean}}, \code{\link[stats]{colMeans}}
-#' @export
-demean <- function(data){
-
- data_demean <- data
- output.mean <- colMeans(data$output)
- input.mean <- colMeans(data$input)
-
-
- data_demean$output <- data$output - output.mean
- data_demean$input <- data$input - input.mean
-
- est <- list(fitted.values=data_demean,output.mean = output.mean,
- input.mean = input.mean)
-
- class(est) <- "demean"
- return(est)
-}
-
-#' Predict the centered values
-#'
-#' Center an \code{idframe} object based on the training center means
-#'
-#' @param object an object of class \code{idframe}
-#' @param newdata An optional idframe object in which to look for variables with which
-#' to predict. If ommited, the original idframe object is used
-#'
-#' @return an \code{idframe} object
-#'
-#' @examples
-#' ## Examples for train and test sets
-#' data(cstr)
-#' splitList <- dataPartition(cstr,p=0.6)
-#' train <- splitList$estimation # training set
-#' test <- splitList$validation # testing set
-#' fit.mean <- demean(train)
-#' train_demean <- predict(fit.mean)
-#' test_demean <- predict(fit.mean,newdata=test)
-#' @export
-predict.demean <- function(object,newdata=NULL,...){
-
- if(is.null(newdata)){
- data <- fitted(object)
- } else{
- data <- newdata
- data$output <- data$output - object$output.mean
- data$input <- data$input - object$input.mean
- }
- return(data)
-}