summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--R/partition.R32
-rw-r--r--man/dataPartition.Rd6
-rw-r--r--man/dataSlice.Rd8
3 files changed, 23 insertions, 23 deletions
diff --git a/R/partition.R b/R/partition.R
index e64e1fb..7c0af2b 100644
--- a/R/partition.R
+++ b/R/partition.R
@@ -1,19 +1,19 @@
-#' Subset an idframe object
+#' Subset an idframe data
#'
-#' Subsetting method for objects of class \code{idframe}
+#' Subsetting method for datas of class \code{idframe}
#'
-#' @param object an object of class \code{idframe}
+#' @param data an object of class \code{idframe}
#' @param indices the indices that need to be subsetted
#' @export
-dataSlice <- function(object,indices){
+dataSlice <- function(data,indices){
# check if the class is correct
- if(class(object)!='idframe')
- stop("Not an idframe object")
+ if(class(data)!='idframe')
+ stop("Not an idframe data")
- if(!all(indices %in% seq(to=dim(object$output)[1],by=1)))
+ if(!all(indices %in% seq(to=dim(data$output)[1],by=1)))
stop("Invalid indices")
- trim <- object
+ trim <- data
trim$output <- trim$output[indices,,drop=F]
trim$input <- trim$input[indices,,drop=F]
@@ -32,9 +32,9 @@ dataSlice <- function(object,indices){
#' The function splits the data into training and validation sets and returns them bundled
#' as a list. The size of the sets are determined by the parameter \code{p}.
#'
-#' @param object an object of class \code{idframe}
+#' @param data an object of class \code{idframe}
#' @param p the percentage of the data that goes to training (Default : \code{0.6})
-#' @return list containing estimation and validation idframe objects
+#' @return list containing estimation and validation idframe datas
#'
#' @examples
#' data(cstr)
@@ -43,18 +43,18 @@ dataSlice <- function(object,indices){
#' test <- splitList$validation # testing set
#'
#' @export
-dataPartition <- function(object,p=0.6){
+dataPartition <- function(data,p=0.6){
# check if the class is correct
- if(class(object)!='idframe')
- stop("Not an idframe object")
+ if(class(data)!='idframe')
+ stop("Not an idframe data")
- index <- seq_along(object$output[,1])
+ index <- seq_along(data$output[,1])
trainIndex <- index[1:round(p*length(index))]
testIndex <- index[!(index %in% trainIndex)]
- train <- dataSlice(object,trainIndex)
- test <- dataSlice(object,testIndex)
+ train <- dataSlice(data,trainIndex)
+ test <- dataSlice(data,testIndex)
return(list(estimation=train,validation=test))
} \ No newline at end of file
diff --git a/man/dataPartition.Rd b/man/dataPartition.Rd
index afcc473..2ac7ef5 100644
--- a/man/dataPartition.Rd
+++ b/man/dataPartition.Rd
@@ -4,15 +4,15 @@
\alias{dataPartition}
\title{Split data into training and validation sets}
\usage{
-dataPartition(object, p = 0.6)
+dataPartition(data, p = 0.6)
}
\arguments{
-\item{object}{an object of class \code{idframe}}
+\item{data}{an object of class \code{idframe}}
\item{p}{the percentage of the data that goes to training (Default : \code{0.6})}
}
\value{
-list containing estimation and validation idframe objects
+list containing estimation and validation idframe datas
}
\description{
The function splits the data into training and validation sets and returns them bundled
diff --git a/man/dataSlice.Rd b/man/dataSlice.Rd
index 2489cc3..52eb438 100644
--- a/man/dataSlice.Rd
+++ b/man/dataSlice.Rd
@@ -2,16 +2,16 @@
% Please edit documentation in R/partition.R
\name{dataSlice}
\alias{dataSlice}
-\title{Subset an idframe object}
+\title{Subset an idframe data}
\usage{
-dataSlice(object, indices)
+dataSlice(data, indices)
}
\arguments{
-\item{object}{an object of class \code{idframe}}
+\item{data}{an object of class \code{idframe}}
\item{indices}{the indices that need to be subsetted}
}
\description{
-Subsetting method for objects of class \code{idframe}
+Subsetting method for datas of class \code{idframe}
}