diff options
author | Suraj Yerramilli | 2016-05-22 12:47:08 +0530 |
---|---|---|
committer | Suraj Yerramilli | 2016-05-22 12:47:08 +0530 |
commit | 1418dac14c87ee4d4700628fce2921eccc473717 (patch) | |
tree | 21400f2bfafef83692fcd32c51525a849094ecd4 /man | |
parent | 8d2cd6167d230359a0bcb069cb7973d6e3a63adf (diff) | |
download | SysID-R-code-1418dac14c87ee4d4700628fce2921eccc473717.tar.gz SysID-R-code-1418dac14c87ee4d4700628fce2921eccc473717.tar.bz2 SysID-R-code-1418dac14c87ee4d4700628fce2921eccc473717.zip |
adding rarx documentation
Diffstat (limited to 'man')
-rw-r--r-- | man/rarx.Rd | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/man/rarx.Rd b/man/rarx.Rd new file mode 100644 index 0000000..5e067dd --- /dev/null +++ b/man/rarx.Rd @@ -0,0 +1,55 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rarx.R +\name{rarx} +\alias{rarx} +\title{Estimate parameters of ARX recursively} +\usage{ +rarx(x, order = c(1, 1, 1), lambda = 0.95) +} +\arguments{ +\item{x}{an object of class \code{idframe}} + +\item{order}{Specification of the orders: the three integer components +(na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and +the input-output delay} + +\item{lambda}{Forgetting factor(Default=\code{0.95})} +} +\value{ +A list containing the following objects +\describe{ + \item{theta}{Estimated parameters of the model. The \eqn{k^{th}} + row contains the parameters associated with the \eqn{k^{th}} + sample. Each row in \code{theta} has the following format: \cr + theta[i,:]=[a1,a2,...,ana,b1,...bnb] + } + \item{yhat}{Predicted value of the output, according to the + current model - parameters based on all past data} +} +} +\description{ +Estimates the parameters of a single-output ARX model of the +specified order from data using the recursive weighted least-squares +algorithm. +} +\examples{ +Gp1 <- idpoly(c(1,-0.9,0.2),2,ioDelay=2,noiseVar = 0.1) +Gp2 <- idpoly(c(1,-1.2,0.35),2.5,ioDelay=2,noiseVar = 0.1) +uk = idinput(2044,'prbs',c(0,1/4)); N = length(uk); +N1 = round(0.35*N); N2 = round(0.4*N); N3 = N-N1-N2; +yk1 <- sim(Gp1,uk[1:N1],addNoise = T) +yk2 <- sim(Gp2,uk[N1+1:N2],addNoise = T) +yk3 <- sim(Gp1,uk[N1+N2+1:N3],addNoise = T) +yk <- c(yk1,yk2,yk3) +z <- idframe(yk,uk,1) +g(theta,yhat) \%=\% rarx(z,c(2,1,2)) + +} +\references{ +Arun K. Tangirala (2015), \emph{Principles of System Identification: +Theory and Practice}, CRC Press, Boca Raton. Section 25.1.3 + +Lennart Ljung (1999), \emph{System Identification: Theory for the User}, +2nd Edition, Prentice Hall, New York. Section 11.2 +} + |