diff options
author | Suraj Yerramilli | 2015-09-06 21:25:03 +0530 |
---|---|---|
committer | Suraj Yerramilli | 2015-09-06 21:25:03 +0530 |
commit | 8f60e350cddf0e7da051b87bb701e3a5cc3a614c (patch) | |
tree | df374a42ce7401267343adabcbf4ea15644d06dd /man/estARX.Rd | |
parent | 5e2871199a017b1a9779b708b2d41fc73624bea9 (diff) | |
download | SysID-R-code-8f60e350cddf0e7da051b87bb701e3a5cc3a614c.tar.gz SysID-R-code-8f60e350cddf0e7da051b87bb701e3a5cc3a614c.tar.bz2 SysID-R-code-8f60e350cddf0e7da051b87bb701e3a5cc3a614c.zip |
Structuring estimation routines
Diffstat (limited to 'man/estARX.Rd')
-rw-r--r-- | man/estARX.Rd | 62 |
1 files changed, 0 insertions, 62 deletions
diff --git a/man/estARX.Rd b/man/estARX.Rd deleted file mode 100644 index 34c0795..0000000 --- a/man/estARX.Rd +++ /dev/null @@ -1,62 +0,0 @@ -% Generated by roxygen2 (4.1.1): do not edit by hand -% Please edit documentation in R/estpoly.R -\name{estARX} -\alias{estARX} -\title{Estimate ARX Models} -\usage{ -estARX(data, order = c(0, 1, 0)) -} -\arguments{ -\item{data}{an object of class \code{idframe}} - -\item{order:}{Specification of the orders: the three integer components -(na,nb,nk) are the order of polynolnomial A, order of polynomial B and -the input-output delay} -} -\value{ -An object with classes \code{estARX} and \code{estPoly}, containing -the following elements: - -\tabular{ll}{ - \code{coefficients} \tab an \code{idpoly} object containing the - fitted coefficients \cr - \code{vcov} \tab the covariance matrix of the fitted coefficients\cr - \code{sigma} \tab the standard deviation of the innovations\cr - \code{df} \tab the residual degrees of freedom \cr - \code{fitted.values} \tab the predicted response \cr - \code{residuals} \tab the residuals \cr - \code{call} \tab the matched call \cr - \code{time} \tab the time of the data used \cr - \code{input} \tab the input data used - } -} -\description{ -Fit an ARX model of the specified order given the input-output data -} -\details{ -SISO ARX models are of the form -\deqn{ - y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] + - \ldots + b_{nk+nb} u[k-nk-nb] + e[k] -} -The function estimates the coefficients using linear least squares (with -no regularization). Future versions may include regularization -parameters as well -\\ -The data is expected to have no offsets or trends. They can be removed -using the \code{\link{detrend}} function. -} -\examples{ -data(arxsim) -model <- estARX(data,c(2,1,1)) -summary(model) # obtain estimates and their covariances -plot(model) # plot the predicted and actual responses -} -\references{ -Arun K. Tangirala (2015), \emph{Principles of System Identification: -Theory and Practice}, CRC Press, Boca Raton. Section 21.6.1 - -Lennart Ljung (1999), \emph{System Identification: Theory for the User}, -2nd Edition, Prentice Hall, New York. Section 10.1 -} - |