summaryrefslogtreecommitdiff
path: root/man/estARX.Rd
diff options
context:
space:
mode:
authorSuraj Yerramilli2015-09-06 21:25:03 +0530
committerSuraj Yerramilli2015-09-06 21:25:03 +0530
commit8f60e350cddf0e7da051b87bb701e3a5cc3a614c (patch)
treedf374a42ce7401267343adabcbf4ea15644d06dd /man/estARX.Rd
parent5e2871199a017b1a9779b708b2d41fc73624bea9 (diff)
downloadSysID-R-code-8f60e350cddf0e7da051b87bb701e3a5cc3a614c.tar.gz
SysID-R-code-8f60e350cddf0e7da051b87bb701e3a5cc3a614c.tar.bz2
SysID-R-code-8f60e350cddf0e7da051b87bb701e3a5cc3a614c.zip
Structuring estimation routines
Diffstat (limited to 'man/estARX.Rd')
-rw-r--r--man/estARX.Rd62
1 files changed, 0 insertions, 62 deletions
diff --git a/man/estARX.Rd b/man/estARX.Rd
deleted file mode 100644
index 34c0795..0000000
--- a/man/estARX.Rd
+++ /dev/null
@@ -1,62 +0,0 @@
-% Generated by roxygen2 (4.1.1): do not edit by hand
-% Please edit documentation in R/estpoly.R
-\name{estARX}
-\alias{estARX}
-\title{Estimate ARX Models}
-\usage{
-estARX(data, order = c(0, 1, 0))
-}
-\arguments{
-\item{data}{an object of class \code{idframe}}
-
-\item{order:}{Specification of the orders: the three integer components
-(na,nb,nk) are the order of polynolnomial A, order of polynomial B and
-the input-output delay}
-}
-\value{
-An object with classes \code{estARX} and \code{estPoly}, containing
-the following elements:
-
-\tabular{ll}{
- \code{coefficients} \tab an \code{idpoly} object containing the
- fitted coefficients \cr
- \code{vcov} \tab the covariance matrix of the fitted coefficients\cr
- \code{sigma} \tab the standard deviation of the innovations\cr
- \code{df} \tab the residual degrees of freedom \cr
- \code{fitted.values} \tab the predicted response \cr
- \code{residuals} \tab the residuals \cr
- \code{call} \tab the matched call \cr
- \code{time} \tab the time of the data used \cr
- \code{input} \tab the input data used
- }
-}
-\description{
-Fit an ARX model of the specified order given the input-output data
-}
-\details{
-SISO ARX models are of the form
-\deqn{
- y[k] + a_1 y[k-1] + \ldots + a_{na} y[k-na] = b_{nk} u[k-nk] +
- \ldots + b_{nk+nb} u[k-nk-nb] + e[k]
-}
-The function estimates the coefficients using linear least squares (with
-no regularization). Future versions may include regularization
-parameters as well
-\\
-The data is expected to have no offsets or trends. They can be removed
-using the \code{\link{detrend}} function.
-}
-\examples{
-data(arxsim)
-model <- estARX(data,c(2,1,1))
-summary(model) # obtain estimates and their covariances
-plot(model) # plot the predicted and actual responses
-}
-\references{
-Arun K. Tangirala (2015), \emph{Principles of System Identification:
-Theory and Practice}, CRC Press, Boca Raton. Section 21.6.1
-
-Lennart Ljung (1999), \emph{System Identification: Theory for the User},
-2nd Edition, Prentice Hall, New York. Section 10.1
-}
-