diff options
author | Suraj Yerramilli | 2015-03-23 00:15:21 +0530 |
---|---|---|
committer | Suraj Yerramilli | 2015-03-23 00:15:21 +0530 |
commit | e1cc3dd25ff07f9eead3c40a24ffa29466232dff (patch) | |
tree | ea147ebae454e1b8fe89277c96e01818790a65cb /R | |
parent | f995715a8525d9e01528a60ed1a718b3aeff3111 (diff) | |
download | SysID-R-code-e1cc3dd25ff07f9eead3c40a24ffa29466232dff.tar.gz SysID-R-code-e1cc3dd25ff07f9eead3c40a24ffa29466232dff.tar.bz2 SysID-R-code-e1cc3dd25ff07f9eead3c40a24ffa29466232dff.zip |
added raw documentation for the impulseest function
Diffstat (limited to 'R')
-rw-r--r-- | R/impulse.R | 30 |
1 files changed, 28 insertions, 2 deletions
diff --git a/R/impulse.R b/R/impulse.R index 834a42d..d248f88 100644 --- a/R/impulse.R +++ b/R/impulse.R @@ -1,4 +1,30 @@ -# Estimate Impulse Response Models +#' Estimate Impulse Response Models +#' +#' \code{impulseest} is used to estimate impulse response models given data +#' +#' @param data an object of class \code{idframe} +#' @param lags The number of lags upto which the estimate is to be +#' calculated. (Default:\code{30}) +#' @param conf The confidence interval +#' +#' @details +#' +#' This function extends the \code{\link[vars]{irf}} function, which estimates the +#' impulse response coefficients given a VAR model for the data. The VAR model is fit +#' using the \code{\link[vars]{VAR}} function. +#' +#' @return An object of class \code{impulseest} containing the following elements +#' \tabular{ll}{ +#' \code{coefs} \tab \code{list} containing the impulse response coefficients \cr +#' \code{lower} \tab \code{list} containing the lower confidence bounds of the +#' impulse response coefficients \cr +#' \code{upper} \tab \code{list} containing the upper confidence bounds of the +#' impulse response coefficients \cr +#' } +#' +#' @seealso \code{\link[vars]{irf}}, \code{\link[vars]{VAR}}, \code{\link{impulse}} , +#' \code{\link{step}} +#' @export impulseest <- function(data,lags=30,conf=0.95){ require(vars) Z <- cbind(data$output,data$input) @@ -7,7 +33,7 @@ impulseest <- function(data,lags=30,conf=0.95){ ir <- irf(fit.var,impulse=colnames(data$input),response=colnames(data$output), n.ahead = lags,ci=conf) - out <- list() + out <- ir class(out) <- "impulseest" return(out) } |