summaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
authorSuraj Yerramilli2015-09-06 21:05:28 +0530
committerSuraj Yerramilli2015-09-06 21:05:28 +0530
commitd408cf729e21eefc52bb128308384f63ec879321 (patch)
tree196f7ed7143d2ccc4c65ffc142be1eab35863fbb /R
parentf98d594eb37c21a8865439d2abcdb9055dad43a5 (diff)
downloadSysID-R-code-d408cf729e21eefc52bb128308384f63ec879321.tar.gz
SysID-R-code-d408cf729e21eefc52bb128308384f63ec879321.tar.bz2
SysID-R-code-d408cf729e21eefc52bb128308384f63ec879321.zip
Simplifying sim functions
Diffstat (limited to 'R')
-rw-r--r--R/sim.R88
1 files changed, 34 insertions, 54 deletions
diff --git a/R/sim.R b/R/sim.R
index d849c15..8426722 100644
--- a/R/sim.R
+++ b/R/sim.R
@@ -6,12 +6,13 @@ sim.default <- function(model,input,sigma=0,seed=NULL){
print("The sim method is not developed for the current class of the object")
}
-#' Simulate from an ARX Model
+#' Simulate from a Polynomial Model
#'
-#' Simulate the response of an ARX system, given the input
+#' Simulate the response of a system system governed by a polynomial model
+#' , given the input
#'
-#' @param model an object of class \code{arx} containing the coefficients
-#' @param input a vector/matrix/idframe containing the input
+#' @param model an object of class \code{idpoly} containing the coefficients
+#' @param input a vector/matrix containing the input
#' @param sigma standard deviation of the innovations (Default= \code{0})
#' @param seed integer indicating the seed value of the random number generator
#'
@@ -23,15 +24,40 @@ sim.default <- function(model,input,sigma=0,seed=NULL){
#' include support for MIMO systems
#'
#' @seealso
-#' \code{\link{arx}} for defining ARX models
+#' \code{\link{idpoly}} for defining polynomial models
#'
#' @examples
+#' # ARX Model
#' u <- rnorm(200,sd=1)
-#' model <- arx(A=c(1,-1.5,0.7),B=c(0.8,-0.25),ioDelay=1)
+#' model <- idpoly(A=c(1,-1.5,0.7),B=c(0.8,-0.25),ioDelay=1)
#' y <- sim(model,u,sigma=0.1)
-#'
+#'
#' @export
-sim.arx <- function(model,input,sigma=0,seed=NULL){
+sim.idpoly <- function(model,input,sigma=0,seed=NULL){
+ if(model$type=="arx"){
+ sim_arx(model,input,sigma,seed)
+ } else{
+ require(signal);require(polynom)
+
+ n <- length(input)[1]
+ if(!is.null(seed)) set.seed(seed)
+ ek <- rnorm(n,sd=sigma)
+ den1 <- as.numeric(polynomial(model$A)*polynomial(model$D))
+ filt1 <- Arma(b=model$C,a=den1)
+ vk <- signal::filter(filt1,ek)
+
+ B <- c(rep(0,model$ioDelay),model$B)
+ den2 <- as.numeric(polynomial(model$A)*polynomial(model$F1))
+ filt2 <- Arma(b=B,a=den2)
+ ufk <- signal::filter(filt2,input)
+
+ yk <- as.numeric(ufk) + as.numeric(vk)
+
+ return(as.numeric(yk))
+ }
+}
+
+sim_arx <- function(model,input,sigma=0,seed=NULL){
na <- length(model$A) - 1; nk <- model$ioDelay;
nb <- length(model$B) - 1; nb1 <- nb+nk
n <- max(na,nb1)
@@ -60,50 +86,4 @@ sim.arx <- function(model,input,sigma=0,seed=NULL){
y[i] <- reg%*%coef + ek[i-n]
}
return(y[n+1:length(uk)])
-}
-
-#' Simulate from a Polynomial Model
-#'
-#' Simulate the response of a system system governed by a polynomial model
-#' , given the input
-#'
-#' @param model an object of class \code{idpoly} containing the coefficients
-#' @param input a vector/matrix containing the input
-#' @param sigma standard deviation of the innovations (Default= \code{0})
-#' @param seed integer indicating the seed value of the random number generator
-#'
-#' @return
-#' a vector containing the output
-#'
-#' @details
-#' The routine is currently built only for SISO systems. Future Versions will
-#' include support for MIMO systems
-#'
-#' @seealso
-#' \code{\link{idpoly}} for defining polynomial models
-#'
-#' @examples
-#' u <- rnorm(200,sd=1)
-#' model <- idpoly(A=c(1,-1.5,0.7),B=c(0.8,-0.25),C=1,D=1,F1=1,ioDelay=1)
-#' y <- sim(model,u,sigma=0.1)
-#'
-#' @export
-sim.idpoly <- function(model,input,sigma=0,seed=NULL){
- require(signal);require(polynom)
-
- n <- length(input)[1]
- if(!is.null(seed)) set.seed(seed)
- ek <- rnorm(n,sd=sigma)
- den1 <- as.numeric(polynomial(model$A)*polynomial(model$D))
- filt1 <- Arma(b=model$C,a=den1)
- vk <- signal::filter(filt1,ek)
-
- B <- c(rep(0,model$ioDelay),model$B)
- den2 <- as.numeric(polynomial(model$A)*polynomial(model$F1))
- filt2 <- Arma(b=B,a=den2)
- ufk <- signal::filter(filt2,input)
-
- yk <- as.numeric(ufk) + as.numeric(vk)
-
- return(as.numeric(yk))
} \ No newline at end of file