summaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
authorSuraj Yerramilli2016-03-18 18:21:09 +0530
committerSuraj Yerramilli2016-03-18 18:21:09 +0530
commita3c8be0455fda4667270a1e7ec71b99d64a45a3e (patch)
treede337509bc274501a3726956a97cd27688cb1fff /R
parent9a894b78aea2bfeb77042fd3f9e4598aee6223b2 (diff)
downloadSysID-R-code-a3c8be0455fda4667270a1e7ec71b99d64a45a3e.tar.gz
SysID-R-code-a3c8be0455fda4667270a1e7ec71b99d64a45a3e.tar.bz2
SysID-R-code-a3c8be0455fda4667270a1e7ec71b99d64a45a3e.zip
integrate noise option for ARMAX models
Diffstat (limited to 'R')
-rw-r--r--R/estpoly.R18
1 files changed, 14 insertions, 4 deletions
diff --git a/R/estpoly.R b/R/estpoly.R
index d1747f3..66cbb25 100644
--- a/R/estpoly.R
+++ b/R/estpoly.R
@@ -212,6 +212,8 @@ arx <- function(x,order=c(1,1,1),lambda=0.1,intNoise=FALSE){
#' + 1, order of the polynomial C,and the input-output delay respectively
#' @param init_sys Linear polynomial model that configures the initial parameterization.
#' Must be an ARMAX model. Overrules the \code{order} argument
+#' @param intNoise Logical variable indicating whether to add integrators in
+#' the noise channel (Default=\code{FALSE})
#' @param options Estimation Options, setup using \code{\link{optimOptions}}
#'
#' @details
@@ -258,8 +260,14 @@ arx <- function(x,order=c(1,1,1),lambda=0.1,intNoise=FALSE){
#' mod_armax
#'
#' @export
-armax <- function(x,order=c(0,1,1,0),init_sys=NULL,options=optimOptions()){
- y <- outputData(x); u <- inputData(x); N <- dim(y)[1]
+armax <- function(x,order=c(0,1,1,0),init_sys=NULL,intNoise=FALSE,
+ options=optimOptions()){
+ y <- outputData(x); u <- inputData(x)
+ if(intNoise){
+ y <- apply(y,2,diff)
+ u <- apply(u,2,diff)
+ }
+ N <- dim(y)[1]
if(!is.null(init_sys)){
checkInitSys(init_sys)
@@ -291,13 +299,15 @@ armax <- function(x,order=c(0,1,1,0),init_sys=NULL,options=optimOptions()){
theta0=theta0,N=N,opt=options)
theta <- l$params
e <- ts(l$residuals,start = start(y),deltat = deltat(y))
+ fit <- matrix(y-e)
+ if(intNoise) fit <- apply(fit,2,cumsum)
model <- idpoly(A = c(1,theta[1:na]),B = theta[na+1:nb],
C = c(1,theta[na+nb+1:nc]),ioDelay = nk,Ts=deltat(x),
- noiseVar = l$sigma,unit=x$unit)
+ noiseVar = l$sigma,intNoise=intNoise,unit=x$unit)
estpoly(sys = model,stats=list(vcov = l$vcov, sigma = l$sigma),
- fitted.values=y-e,residuals=e,call=match.call(),input=u,
+ fitted.values=fit,residuals=e,call=match.call(),input=u,
options = options,termination = l$termination)
}