diff options
author | Suraj Yerramilli | 2015-02-11 19:17:19 +0530 |
---|---|---|
committer | Suraj Yerramilli | 2015-02-11 19:17:19 +0530 |
commit | a1912915b20ed0e475ce69495e2b6292b57bea98 (patch) | |
tree | d8ffa0a1ba96fe64849e41efbd5700fe5318d182 /R | |
parent | 66bfdadddbaa4c082a497a6e36c83f817165e302 (diff) | |
download | SysID-R-code-a1912915b20ed0e475ce69495e2b6292b57bea98.tar.gz SysID-R-code-a1912915b20ed0e475ce69495e2b6292b57bea98.tar.bz2 SysID-R-code-a1912915b20ed0e475ce69495e2b6292b57bea98.zip |
major redesign of the the detrend function
Diffstat (limited to 'R')
-rw-r--r-- | R/detrend.R | 59 |
1 files changed, 45 insertions, 14 deletions
diff --git a/R/detrend.R b/R/detrend.R index 670f0f0..8fde614 100644 --- a/R/detrend.R +++ b/R/detrend.R @@ -1,21 +1,39 @@ #' Remove linear trends #' -#' Removes the mean value or (piecewise) linear function from the -#' input and output matrices -#' +#' Removes the linear function from the input and output matrices. +#' +#' @param data an object of class \code{idframe} +#' +#' @examples +#' data(cstr) +#' fit <- detrend(cstr) +#' cstr_detrend <- predict(fit) +#' +#' ## Examples for train and test sets +#' data(cstr) +#' splitList <- dataPartition(cstr,p=0.6) +#' train <- splitList$estimation # training set +#' test <- splitList$validation # testing set +#' fit <- detrend(trend) +#' train_detrend <- predict(fit) +#' test_detrend <- predict(fit,newdata=test) +#' +#' @seealso \code{\link[stats]{lm}} #' @export -detrend.idframe <- function(data,tt="linear",bp=c()){ - require(pracma) +detrend.idframe <- function(data){ - output0 <- as.data.frame(detrend(as.matrix(data$output),tt=tt,bp=bp)) - input0 <- as.data.frame(detrend(as.matrix(data$input),tt=tt,bp=bp)) + data_detrend <- data + + output_trend <- lapply(data$output,trend.fit) + out <- detrend.predict(output_trend,data$output) - data0 <- data; data0$output <- output0; data0$input <- input0 - output_d <- data$output - output0 - input_d <- data$input - input0 + input_trend <- lapply(data$input,trend.fit) + input <- detrend.predict(input_trend,data$input) - est <- list(fitted.values= data0,out.diff = output_d,inp.diff=input_d, - raw.values = data) + data_detrend$output <- out;data_detrend$input <- input + + est <- list(fitted.values=data_detrend,output.trend = output_trend, + input.trend = input_trend) class(est) <- "detrend.idframe" return(est) @@ -31,8 +49,21 @@ predict.detrend.idframe <- function(object,newdata=NULL,...){ data <- fitted(object) } else{ data <- newdata - data$output <- newdata$output - object$out.diff - data$input <- newdata$input - object$inp.diff + out <- detrend.predict(object$output.trend,data$output) + input <- detrend.predict(object$input.trend,data$input) + data$output <- out;data$input <- input } return(data) +} + +detrend.predict <- function(object,data){ + pred_list <- lapply(X=object,FUN=predict,newdata=data) + pred <- data.frame(matrix(unlist(pred_list),ncol=ncol(data),byrow=T)) + colnames(pred) <- colnames(data) + return(pred) +} + +trend.fit <- function(x){ + fit_self <- lm(x~time(x)) + fit_self }
\ No newline at end of file |