summaryrefslogtreecommitdiff
path: root/thirdparty/raspberrypi/includes/opencv2/ocl/ocl.hpp
blob: e8eb3e8599e1cabfdaff6e84d1e6e19452cb65c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_OCL_HPP__
#define __OPENCV_OCL_HPP__

#include <memory>
#include <vector>

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/ml/ml.hpp"

namespace cv
{
    namespace ocl
    {
        enum DeviceType
        {
            CVCL_DEVICE_TYPE_DEFAULT     = (1 << 0),
            CVCL_DEVICE_TYPE_CPU         = (1 << 1),
            CVCL_DEVICE_TYPE_GPU         = (1 << 2),
            CVCL_DEVICE_TYPE_ACCELERATOR = (1 << 3),
            //CVCL_DEVICE_TYPE_CUSTOM      = (1 << 4)
            CVCL_DEVICE_TYPE_ALL         = 0xFFFFFFFF
        };

        enum DevMemRW
        {
            DEVICE_MEM_R_W = 0,
            DEVICE_MEM_R_ONLY,
            DEVICE_MEM_W_ONLY
        };

        enum DevMemType
        {
            DEVICE_MEM_DEFAULT = 0,
            DEVICE_MEM_AHP,         //alloc host pointer
            DEVICE_MEM_UHP,         //use host pointer
            DEVICE_MEM_CHP,         //copy host pointer
            DEVICE_MEM_PM           //persistent memory
        };

        // these classes contain OpenCL runtime information

        struct PlatformInfo;

        struct DeviceInfo
        {
            int _id; // reserved, don't use it

            DeviceType deviceType;
            std::string deviceProfile;
            std::string deviceVersion;
            std::string deviceName;
            std::string deviceVendor;
            int deviceVendorId;
            std::string deviceDriverVersion;
            std::string deviceExtensions;

            size_t maxWorkGroupSize;
            std::vector<size_t> maxWorkItemSizes;
            int maxComputeUnits;
            size_t localMemorySize;
            size_t maxMemAllocSize;

            int deviceVersionMajor;
            int deviceVersionMinor;

            bool haveDoubleSupport;
            bool isUnifiedMemory; // 1 means integrated GPU, otherwise this value is 0
            bool isIntelDevice;

            std::string compilationExtraOptions;

            const PlatformInfo* platform;

            DeviceInfo();
            ~DeviceInfo();
        };

        struct PlatformInfo
        {
            int _id; // reserved, don't use it

            std::string platformProfile;
            std::string platformVersion;
            std::string platformName;
            std::string platformVendor;
            std::string platformExtensons;

            int platformVersionMajor;
            int platformVersionMinor;

            std::vector<const DeviceInfo*> devices;

            PlatformInfo();
            ~PlatformInfo();
        };

        //////////////////////////////// Initialization & Info ////////////////////////
        typedef std::vector<const PlatformInfo*> PlatformsInfo;

        CV_EXPORTS int getOpenCLPlatforms(PlatformsInfo& platforms);

        typedef std::vector<const DeviceInfo*> DevicesInfo;

        CV_EXPORTS int getOpenCLDevices(DevicesInfo& devices, int deviceType = CVCL_DEVICE_TYPE_GPU,
                const PlatformInfo* platform = NULL);

        // set device you want to use
        CV_EXPORTS void setDevice(const DeviceInfo* info);

        // Initialize from OpenCL handles directly.
        // Argument types is (pointers): cl_platform_id*, cl_context*, cl_device_id*
        CV_EXPORTS void initializeContext(void* pClPlatform, void* pClContext, void* pClDevice);

        //////////////////////////////// Error handling ////////////////////////
        CV_EXPORTS void error(const char *error_string, const char *file, const int line, const char *func);

        enum FEATURE_TYPE
        {
            FEATURE_CL_DOUBLE = 1,
            FEATURE_CL_UNIFIED_MEM,
            FEATURE_CL_VER_1_2,
            FEATURE_CL_INTEL_DEVICE
        };

        // Represents OpenCL context, interface
        class CV_EXPORTS Context
        {
        protected:
            Context() { }
            ~Context() { }
        public:
            static Context* getContext();

            bool supportsFeature(FEATURE_TYPE featureType) const;
            const DeviceInfo& getDeviceInfo() const;

            const void* getOpenCLContextPtr() const;
            const void* getOpenCLCommandQueuePtr() const;
            const void* getOpenCLDeviceIDPtr() const;
        };

        inline const void *getClContextPtr()
        {
            return Context::getContext()->getOpenCLContextPtr();
        }

        inline const void *getClCommandQueuePtr()
        {
            return Context::getContext()->getOpenCLCommandQueuePtr();
        }

        CV_EXPORTS bool supportsFeature(FEATURE_TYPE featureType);

        CV_EXPORTS void finish();

        enum BINARY_CACHE_MODE
        {
            CACHE_NONE    = 0,        // do not cache OpenCL binary
            CACHE_DEBUG   = 0x1 << 0, // cache OpenCL binary when built in debug mode
            CACHE_RELEASE = 0x1 << 1, // default behavior, only cache when built in release mode
            CACHE_ALL     = CACHE_DEBUG | CACHE_RELEASE // cache opencl binary
        };
        //! Enable or disable OpenCL program binary caching onto local disk
        // After a program (*.cl files in opencl/ folder) is built at runtime, we allow the
        // compiled OpenCL program to be cached to the path automatically as "path/*.clb"
        // binary file, which will be reused when the OpenCV executable is started again.
        //
        // This feature is enabled by default.
        CV_EXPORTS void setBinaryDiskCache(int mode = CACHE_RELEASE, cv::String path = "./");

        //! set where binary cache to be saved to
        CV_EXPORTS void setBinaryPath(const char *path);

        struct ProgramSource
        {
            const char* name;
            const char* programStr;
            const char* programHash;

            // Cache in memory by name (should be unique). Caching on disk disabled.
            inline ProgramSource(const char* _name, const char* _programStr)
                : name(_name), programStr(_programStr), programHash(NULL)
            {
            }

            // Cache in memory by name (should be unique). Caching on disk uses programHash mark.
            inline ProgramSource(const char* _name, const char* _programStr, const char* _programHash)
                : name(_name), programStr(_programStr), programHash(_programHash)
            {
            }
        };

        //! Calls OpenCL kernel. Pass globalThreads = NULL, and cleanUp = true, to finally clean-up without executing.
        //! Deprecated, will be replaced
        CV_EXPORTS void openCLExecuteKernelInterop(Context *clCxt,
                const cv::ocl::ProgramSource& source, string kernelName,
                size_t globalThreads[3], size_t localThreads[3],
                std::vector< std::pair<size_t, const void *> > &args,
                int channels, int depth, const char *build_options);

        class CV_EXPORTS oclMatExpr;
        //////////////////////////////// oclMat ////////////////////////////////
        class CV_EXPORTS oclMat
        {
        public:
            //! default constructor
            oclMat();
            //! constructs oclMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
            oclMat(int rows, int cols, int type);
            oclMat(Size size, int type);
            //! constucts oclMatrix and fills it with the specified value _s.
            oclMat(int rows, int cols, int type, const Scalar &s);
            oclMat(Size size, int type, const Scalar &s);
            //! copy constructor
            oclMat(const oclMat &m);

            //! constructor for oclMatrix headers pointing to user-allocated data
            oclMat(int rows, int cols, int type, void *data, size_t step = Mat::AUTO_STEP);
            oclMat(Size size, int type, void *data, size_t step = Mat::AUTO_STEP);

            //! creates a matrix header for a part of the bigger matrix
            oclMat(const oclMat &m, const Range &rowRange, const Range &colRange);
            oclMat(const oclMat &m, const Rect &roi);

            //! builds oclMat from Mat. Perfom blocking upload to device.
            explicit oclMat (const Mat &m);

            //! destructor - calls release()
            ~oclMat();

            //! assignment operators
            oclMat &operator = (const oclMat &m);
            //! assignment operator. Perfom blocking upload to device.
            oclMat &operator = (const Mat &m);
            oclMat &operator = (const oclMatExpr& expr);

            //! pefroms blocking upload data to oclMat.
            void upload(const cv::Mat &m);


            //! downloads data from device to host memory. Blocking calls.
            operator Mat() const;
            void download(cv::Mat &m) const;

            //! convert to _InputArray
            operator _InputArray();

            //! convert to _OutputArray
            operator _OutputArray();

            //! returns a new oclMatrix header for the specified row
            oclMat row(int y) const;
            //! returns a new oclMatrix header for the specified column
            oclMat col(int x) const;
            //! ... for the specified row span
            oclMat rowRange(int startrow, int endrow) const;
            oclMat rowRange(const Range &r) const;
            //! ... for the specified column span
            oclMat colRange(int startcol, int endcol) const;
            oclMat colRange(const Range &r) const;

            //! returns deep copy of the oclMatrix, i.e. the data is copied
            oclMat clone() const;

            //! copies those oclMatrix elements to "m" that are marked with non-zero mask elements.
            // It calls m.create(this->size(), this->type()).
            // It supports any data type
            void copyTo( oclMat &m, const oclMat &mask = oclMat()) const;

            //! converts oclMatrix to another datatype with optional scalng. See cvConvertScale.
            void convertTo( oclMat &m, int rtype, double alpha = 1, double beta = 0 ) const;

            void assignTo( oclMat &m, int type = -1 ) const;

            //! sets every oclMatrix element to s
            oclMat& operator = (const Scalar &s);
            //! sets some of the oclMatrix elements to s, according to the mask
            oclMat& setTo(const Scalar &s, const oclMat &mask = oclMat());
            //! creates alternative oclMatrix header for the same data, with different
            // number of channels and/or different number of rows. see cvReshape.
            oclMat reshape(int cn, int rows = 0) const;

            //! allocates new oclMatrix data unless the oclMatrix already has specified size and type.
            // previous data is unreferenced if needed.
            void create(int rows, int cols, int type);
            void create(Size size, int type);

            //! allocates new oclMatrix with specified device memory type.
            void createEx(int rows, int cols, int type, DevMemRW rw_type, DevMemType mem_type);
            void createEx(Size size, int type, DevMemRW rw_type, DevMemType mem_type);

            //! decreases reference counter;
            // deallocate the data when reference counter reaches 0.
            void release();

            //! swaps with other smart pointer
            void swap(oclMat &mat);

            //! locates oclMatrix header within a parent oclMatrix. See below
            void locateROI( Size &wholeSize, Point &ofs ) const;
            //! moves/resizes the current oclMatrix ROI inside the parent oclMatrix.
            oclMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
            //! extracts a rectangular sub-oclMatrix
            // (this is a generalized form of row, rowRange etc.)
            oclMat operator()( Range rowRange, Range colRange ) const;
            oclMat operator()( const Rect &roi ) const;

            oclMat& operator+=( const oclMat& m );
            oclMat& operator-=( const oclMat& m );
            oclMat& operator*=( const oclMat& m );
            oclMat& operator/=( const oclMat& m );

            //! returns true if the oclMatrix data is continuous
            // (i.e. when there are no gaps between successive rows).
            // similar to CV_IS_oclMat_CONT(cvoclMat->type)
            bool isContinuous() const;
            //! returns element size in bytes,
            // similar to CV_ELEM_SIZE(cvMat->type)
            size_t elemSize() const;
            //! returns the size of element channel in bytes.
            size_t elemSize1() const;
            //! returns element type, similar to CV_MAT_TYPE(cvMat->type)
            int type() const;
            //! returns element type, i.e. 8UC3 returns 8UC4 because in ocl
            //! 3 channels element actually use 4 channel space
            int ocltype() const;
            //! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
            int depth() const;
            //! returns element type, similar to CV_MAT_CN(cvMat->type)
            int channels() const;
            //! returns element type, return 4 for 3 channels element,
            //!becuase 3 channels element actually use 4 channel space
            int oclchannels() const;
            //! returns step/elemSize1()
            size_t step1() const;
            //! returns oclMatrix size:
            // width == number of columns, height == number of rows
            Size size() const;
            //! returns true if oclMatrix data is NULL
            bool empty() const;

            //! matrix transposition
            oclMat t() const;

            /*! includes several bit-fields:
              - the magic signature
              - continuity flag
              - depth
              - number of channels
              */
            int flags;
            //! the number of rows and columns
            int rows, cols;
            //! a distance between successive rows in bytes; includes the gap if any
            size_t step;
            //! pointer to the data(OCL memory object)
            uchar *data;

            //! pointer to the reference counter;
            // when oclMatrix points to user-allocated data, the pointer is NULL
            int *refcount;

            //! helper fields used in locateROI and adjustROI
            //datastart and dataend are not used in current version
            uchar *datastart;
            uchar *dataend;

            //! OpenCL context associated with the oclMat object.
            Context *clCxt; // TODO clCtx
            //add offset for handle ROI, calculated in byte
            int offset;
            //add wholerows and wholecols for the whole matrix, datastart and dataend are no longer used
            int wholerows;
            int wholecols;
        };

        // convert InputArray/OutputArray to oclMat references
        CV_EXPORTS oclMat& getOclMatRef(InputArray src);
        CV_EXPORTS oclMat& getOclMatRef(OutputArray src);

        ///////////////////// mat split and merge /////////////////////////////////
        //! Compose a multi-channel array from several single-channel arrays
        // Support all types
        CV_EXPORTS void merge(const oclMat *src, size_t n, oclMat &dst);
        CV_EXPORTS void merge(const vector<oclMat> &src, oclMat &dst);

        //! Divides multi-channel array into several single-channel arrays
        // Support all types
        CV_EXPORTS void split(const oclMat &src, oclMat *dst);
        CV_EXPORTS void split(const oclMat &src, vector<oclMat> &dst);

        ////////////////////////////// Arithmetics ///////////////////////////////////

        //! adds one matrix to another with scale (dst = src1 * alpha + src2 * beta + gama)
        // supports all data types
        CV_EXPORTS void addWeighted(const oclMat &src1, double  alpha, const oclMat &src2, double beta, double gama, oclMat &dst);

        //! adds one matrix to another (dst = src1 + src2)
        // supports all data types
        CV_EXPORTS void add(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        //! adds scalar to a matrix (dst = src1 + s)
        // supports all data types
        CV_EXPORTS void add(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! subtracts one matrix from another (dst = src1 - src2)
        // supports all data types
        CV_EXPORTS void subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        //! subtracts scalar from a matrix (dst = src1 - s)
        // supports all data types
        CV_EXPORTS void subtract(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! computes element-wise product of the two arrays (dst = src1 * scale * src2)
        // supports all data types
        CV_EXPORTS void multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scale = 1);
        //! multiplies matrix to a number (dst = scalar * src)
        // supports all data types
        CV_EXPORTS void multiply(double scalar, const oclMat &src, oclMat &dst);

        //! computes element-wise quotient of the two arrays (dst = src1 * scale / src2)
        // supports all data types
        CV_EXPORTS void divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scale = 1);
        //! computes element-wise quotient of the two arrays (dst = scale / src)
        // supports all data types
        CV_EXPORTS void divide(double scale, const oclMat &src1, oclMat &dst);

        //! computes element-wise minimum of the two arrays (dst = min(src1, src2))
        // supports all data types
        CV_EXPORTS void min(const oclMat &src1, const oclMat &src2, oclMat &dst);

        //! computes element-wise maximum of the two arrays (dst = max(src1, src2))
        // supports all data types
        CV_EXPORTS void max(const oclMat &src1, const oclMat &src2, oclMat &dst);

        //! compares elements of two arrays (dst = src1 \verbatim<cmpop>\endverbatim src2)
        // supports all data types
        CV_EXPORTS void compare(const oclMat &src1, const oclMat &src2, oclMat &dst, int cmpop);

        //! transposes the matrix
        // supports all data types
        CV_EXPORTS void transpose(const oclMat &src, oclMat &dst);

        //! computes element-wise absolute values of an array (dst = abs(src))
        // supports all data types
        CV_EXPORTS void abs(const oclMat &src, oclMat &dst);

        //! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2))
        // supports all data types
        CV_EXPORTS void absdiff(const oclMat &src1, const oclMat &src2, oclMat &dst);
        //! computes element-wise absolute difference of array and scalar (dst = abs(src1 - s))
        // supports all data types
        CV_EXPORTS void absdiff(const oclMat &src1, const Scalar &s, oclMat &dst);

        //! computes mean value and standard deviation of all or selected array elements
        // supports all data types
        CV_EXPORTS void meanStdDev(const oclMat &mtx, Scalar &mean, Scalar &stddev);

        //! computes norm of array
        // supports NORM_INF, NORM_L1, NORM_L2
        // supports all data types
        CV_EXPORTS double norm(const oclMat &src1, int normType = NORM_L2);

        //! computes norm of the difference between two arrays
        // supports NORM_INF, NORM_L1, NORM_L2
        // supports all data types
        CV_EXPORTS double norm(const oclMat &src1, const oclMat &src2, int normType = NORM_L2);

        //! reverses the order of the rows, columns or both in a matrix
        // supports all types
        CV_EXPORTS void flip(const oclMat &src, oclMat &dst, int flipCode);

        //! computes sum of array elements
        // support all types
        CV_EXPORTS Scalar sum(const oclMat &m);
        CV_EXPORTS Scalar absSum(const oclMat &m);
        CV_EXPORTS Scalar sqrSum(const oclMat &m);

        //! finds global minimum and maximum array elements and returns their values
        // support all C1 types
        CV_EXPORTS void minMax(const oclMat &src, double *minVal, double *maxVal = 0, const oclMat &mask = oclMat());

        //! finds global minimum and maximum array elements and returns their values with locations
        // support all C1 types
        CV_EXPORTS void minMaxLoc(const oclMat &src, double *minVal, double *maxVal = 0, Point *minLoc = 0, Point *maxLoc = 0,
                                  const oclMat &mask = oclMat());

        //! counts non-zero array elements
        // support all types
        CV_EXPORTS int countNonZero(const oclMat &src);

        //! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
        // destination array will have the depth type as lut and the same channels number as source
        //It supports 8UC1 8UC4 only
        CV_EXPORTS void LUT(const oclMat &src, const oclMat &lut, oclMat &dst);

        //! only 8UC1 and 256 bins is supported now
        CV_EXPORTS void calcHist(const oclMat &mat_src, oclMat &mat_hist);
        //! only 8UC1 and 256 bins is supported now
        CV_EXPORTS void equalizeHist(const oclMat &mat_src, oclMat &mat_dst);

        //! only 8UC1 is supported now
        CV_EXPORTS Ptr<cv::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));

        //! bilateralFilter
        // supports 8UC1 8UC4
        CV_EXPORTS void bilateralFilter(const oclMat& src, oclMat& dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT);

        //! Applies an adaptive bilateral filter to the input image
        //  Unlike the usual bilateral filter that uses fixed value for sigmaColor,
        //  the adaptive version calculates the local variance in he ksize neighborhood
        //  and use this as sigmaColor, for the value filtering. However, the local standard deviation is
        //  clamped to the maxSigmaColor.
        //  supports 8UC1, 8UC3
        CV_EXPORTS void adaptiveBilateralFilter(const oclMat& src, oclMat& dst, Size ksize, double sigmaSpace, double maxSigmaColor=20.0, Point anchor = Point(-1, -1), int borderType=BORDER_DEFAULT);

        //! computes exponent of each matrix element (dst = e**src)
        // supports only CV_32FC1, CV_64FC1 type
        CV_EXPORTS void exp(const oclMat &src, oclMat &dst);

        //! computes natural logarithm of absolute value of each matrix element: dst = log(abs(src))
        // supports only CV_32FC1, CV_64FC1 type
        CV_EXPORTS void log(const oclMat &src, oclMat &dst);

        //! computes magnitude of each (x(i), y(i)) vector
        // supports only CV_32F, CV_64F type
        CV_EXPORTS void magnitude(const oclMat &x, const oclMat &y, oclMat &magnitude);

        //! computes angle (angle(i)) of each (x(i), y(i)) vector
        // supports only CV_32F, CV_64F type
        CV_EXPORTS void phase(const oclMat &x, const oclMat &y, oclMat &angle, bool angleInDegrees = false);

        //! the function raises every element of tne input array to p
        // support only CV_32F, CV_64F type
        CV_EXPORTS void pow(const oclMat &x, double p, oclMat &y);

        //! converts Cartesian coordinates to polar
        // supports only CV_32F CV_64F type
        CV_EXPORTS void cartToPolar(const oclMat &x, const oclMat &y, oclMat &magnitude, oclMat &angle, bool angleInDegrees = false);

        //! converts polar coordinates to Cartesian
        // supports only CV_32F CV_64F type
        CV_EXPORTS void polarToCart(const oclMat &magnitude, const oclMat &angle, oclMat &x, oclMat &y, bool angleInDegrees = false);

        //! perfroms per-elements bit-wise inversion
        // supports all types
        CV_EXPORTS void bitwise_not(const oclMat &src, oclMat &dst);

        //! calculates per-element bit-wise disjunction of two arrays
        // supports all types
        CV_EXPORTS void bitwise_or(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        CV_EXPORTS void bitwise_or(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! calculates per-element bit-wise conjunction of two arrays
        // supports all types
        CV_EXPORTS void bitwise_and(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        CV_EXPORTS void bitwise_and(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! calculates per-element bit-wise "exclusive or" operation
        // supports all types
        CV_EXPORTS void bitwise_xor(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        CV_EXPORTS void bitwise_xor(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! Logical operators
        CV_EXPORTS oclMat operator ~ (const oclMat &);
        CV_EXPORTS oclMat operator | (const oclMat &, const oclMat &);
        CV_EXPORTS oclMat operator & (const oclMat &, const oclMat &);
        CV_EXPORTS oclMat operator ^ (const oclMat &, const oclMat &);


        //! Mathematics operators
        CV_EXPORTS oclMatExpr operator + (const oclMat &src1, const oclMat &src2);
        CV_EXPORTS oclMatExpr operator - (const oclMat &src1, const oclMat &src2);
        CV_EXPORTS oclMatExpr operator * (const oclMat &src1, const oclMat &src2);
        CV_EXPORTS oclMatExpr operator / (const oclMat &src1, const oclMat &src2);

        //! computes convolution of two images
        // support only CV_32FC1 type
        CV_EXPORTS void convolve(const oclMat &image, const oclMat &temp1, oclMat &result);

        CV_EXPORTS void cvtColor(const oclMat &src, oclMat &dst, int code, int dcn = 0);

        //! initializes a scaled identity matrix
        CV_EXPORTS void setIdentity(oclMat& src, const Scalar & val = Scalar(1));

        //! fills the output array with repeated copies of the input array
        CV_EXPORTS void repeat(const oclMat & src, int ny, int nx, oclMat & dst);

        //////////////////////////////// Filter Engine ////////////////////////////////

        /*!
          The Base Class for 1D or Row-wise Filters

          This is the base class for linear or non-linear filters that process 1D data.
          In particular, such filters are used for the "horizontal" filtering parts in separable filters.
          */
        class CV_EXPORTS BaseRowFilter_GPU
        {
        public:
            BaseRowFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {}
            virtual ~BaseRowFilter_GPU() {}
            virtual void operator()(const oclMat &src, oclMat &dst) = 0;
            int ksize, anchor, bordertype;
        };

        /*!
          The Base Class for Column-wise Filters

          This is the base class for linear or non-linear filters that process columns of 2D arrays.
          Such filters are used for the "vertical" filtering parts in separable filters.
          */
        class CV_EXPORTS BaseColumnFilter_GPU
        {
        public:
            BaseColumnFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {}
            virtual ~BaseColumnFilter_GPU() {}
            virtual void operator()(const oclMat &src, oclMat &dst) = 0;
            int ksize, anchor, bordertype;
        };

        /*!
          The Base Class for Non-Separable 2D Filters.

          This is the base class for linear or non-linear 2D filters.
          */
        class CV_EXPORTS BaseFilter_GPU
        {
        public:
            BaseFilter_GPU(const Size &ksize_, const Point &anchor_, const int &borderType_)
                : ksize(ksize_), anchor(anchor_), borderType(borderType_) {}
            virtual ~BaseFilter_GPU() {}
            virtual void operator()(const oclMat &src, oclMat &dst) = 0;
            Size ksize;
            Point anchor;
            int borderType;
        };

        /*!
          The Base Class for Filter Engine.

          The class can be used to apply an arbitrary filtering operation to an image.
          It contains all the necessary intermediate buffers.
          */
        class CV_EXPORTS FilterEngine_GPU
        {
        public:
            virtual ~FilterEngine_GPU() {}

            virtual void apply(const oclMat &src, oclMat &dst, Rect roi = Rect(0, 0, -1, -1)) = 0;
        };

        //! returns the non-separable filter engine with the specified filter
        CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU> filter2D);

        //! returns the primitive row filter with the specified kernel
        CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat &rowKernel,
                int anchor = -1, int bordertype = BORDER_DEFAULT);

        //! returns the primitive column filter with the specified kernel
        CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat &columnKernel,
                int anchor = -1, int bordertype = BORDER_DEFAULT, double delta = 0.0);

        //! returns the separable linear filter engine
        CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat &rowKernel,
                const Mat &columnKernel, const Point &anchor = Point(-1, -1), double delta = 0.0, int bordertype = BORDER_DEFAULT, Size imgSize = Size(-1,-1));

        //! returns the separable filter engine with the specified filters
        CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU> &rowFilter,
                const Ptr<BaseColumnFilter_GPU> &columnFilter);

        //! returns the Gaussian filter engine
        CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0, int bordertype = BORDER_DEFAULT, Size imgSize = Size(-1,-1));

        //! returns filter engine for the generalized Sobel operator
        CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU( int srcType, int dstType, int dx, int dy, int ksize, int borderType = BORDER_DEFAULT, Size imgSize = Size(-1,-1) );

        //! applies Laplacian operator to the image
        // supports only ksize = 1 and ksize = 3
        CV_EXPORTS void Laplacian(const oclMat &src, oclMat &dst, int ddepth, int ksize = 1, double scale = 1,
                double delta=0, int borderType=BORDER_DEFAULT);

        //! returns 2D box filter
        // dst type must be the same as source type
        CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType,
                const Size &ksize, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! returns box filter engine
        CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size &ksize,
                const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! returns 2D filter with the specified kernel
        // supports: dst type must be the same as source type
        CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, const Size &ksize,
                const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! returns the non-separable linear filter engine
        // supports: dst type must be the same as source type
        CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat &kernel,
                const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! smooths the image using the normalized box filter
        CV_EXPORTS void boxFilter(const oclMat &src, oclMat &dst, int ddepth, Size ksize,
                                  Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! returns 2D morphological filter
        //! only MORPH_ERODE and MORPH_DILATE are supported
        // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
        // kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
        CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat &kernel, const Size &ksize,
                Point anchor = Point(-1, -1));

        //! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
        CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat &kernel,
                const Point &anchor = Point(-1, -1), int iterations = 1);

        //! a synonym for normalized box filter
        static inline void blur(const oclMat &src, oclMat &dst, Size ksize, Point anchor = Point(-1, -1),
                                int borderType = BORDER_CONSTANT)
        {
            boxFilter(src, dst, -1, ksize, anchor, borderType);
        }

        //! applies non-separable 2D linear filter to the image
        CV_EXPORTS void filter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernel,
                                 Point anchor = Point(-1, -1), double delta = 0.0, int borderType = BORDER_DEFAULT);

        //! applies separable 2D linear filter to the image
        CV_EXPORTS void sepFilter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernelX, const Mat &kernelY,
                                    Point anchor = Point(-1, -1), double delta = 0.0, int bordertype = BORDER_DEFAULT);

        //! applies generalized Sobel operator to the image
        // dst.type must equalize src.type
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
        CV_EXPORTS void Sobel(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0.0, int bordertype = BORDER_DEFAULT);

        //! applies the vertical or horizontal Scharr operator to the image
        // dst.type must equalize src.type
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
        CV_EXPORTS void Scharr(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0.0, int bordertype = BORDER_DEFAULT);

        //! smooths the image using Gaussian filter.
        // dst.type must equalize src.type
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
        CV_EXPORTS void GaussianBlur(const oclMat &src, oclMat &dst, Size ksize, double sigma1, double sigma2 = 0, int bordertype = BORDER_DEFAULT);

        //! erodes the image (applies the local minimum operator)
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        CV_EXPORTS void erode( const oclMat &src, oclMat &dst, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,

                               int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());


        //! dilates the image (applies the local maximum operator)
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        CV_EXPORTS void dilate( const oclMat &src, oclMat &dst, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,

                                int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());


        //! applies an advanced morphological operation to the image
        CV_EXPORTS void morphologyEx( const oclMat &src, oclMat &dst, int op, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,

                                      int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());


        ////////////////////////////// Image processing //////////////////////////////
        //! Does mean shift filtering on GPU.
        CV_EXPORTS void meanShiftFiltering(const oclMat &src, oclMat &dst, int sp, int sr,
                                           TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));

        //! Does mean shift procedure on GPU.
        CV_EXPORTS void meanShiftProc(const oclMat &src, oclMat &dstr, oclMat &dstsp, int sp, int sr,
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));

        //! Does mean shift segmentation with elimiation of small regions.
        CV_EXPORTS void meanShiftSegmentation(const oclMat &src, Mat &dst, int sp, int sr, int minsize,
                                              TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));

        //! applies fixed threshold to the image.
        // supports CV_8UC1 and CV_32FC1 data type
        // supports threshold type: THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV
        CV_EXPORTS double threshold(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type = THRESH_TRUNC);

        //! resizes the image
        // Supports INTER_NEAREST, INTER_LINEAR
        // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
        CV_EXPORTS void resize(const oclMat &src, oclMat &dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR);

        //! Applies a generic geometrical transformation to an image.

        // Supports INTER_NEAREST, INTER_LINEAR.
        // Map1 supports CV_16SC2, CV_32FC2  types.
        // Src supports CV_8UC1, CV_8UC2, CV_8UC4.
        CV_EXPORTS void remap(const oclMat &src, oclMat &dst, oclMat &map1, oclMat &map2, int interpolation, int bordertype, const Scalar &value = Scalar());

        //! copies 2D array to a larger destination array and pads borders with user-specifiable constant
        // supports CV_8UC1, CV_8UC4, CV_32SC1 types
        CV_EXPORTS void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int boardtype, const Scalar &value = Scalar());

        //! Smoothes image using median filter
        // The source 1- or 4-channel image. m should be 3 or 5, the image depth should be CV_8U or CV_32F.
        CV_EXPORTS void medianFilter(const oclMat &src, oclMat &dst, int m);

        //! warps the image using affine transformation
        // Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
        // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
        CV_EXPORTS void warpAffine(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR);

        //! warps the image using perspective transformation
        // Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
        // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
        CV_EXPORTS void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR);

        //! computes the integral image and integral for the squared image
        // sum will have CV_32S type, sqsum - CV32F type
        // supports only CV_8UC1 source type
        CV_EXPORTS void integral(const oclMat &src, oclMat &sum, oclMat &sqsum);
        CV_EXPORTS void integral(const oclMat &src, oclMat &sum);
        CV_EXPORTS void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT);
        CV_EXPORTS void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
            int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT);
        CV_EXPORTS void cornerMinEigenVal(const oclMat &src, oclMat &dst, int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT);
        CV_EXPORTS void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
            int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT);
        /////////////////////////////////// ML ///////////////////////////////////////////

        //! Compute closest centers for each lines in source and lable it after center's index
        // supports CV_32FC1/CV_32FC2/CV_32FC4 data type
        // supports NORM_L1 and NORM_L2 distType
        // if indices is provided, only the indexed rows will be calculated and their results are in the same
        // order of indices
        CV_EXPORTS void distanceToCenters(const oclMat &src, const oclMat &centers, Mat &dists, Mat &labels, int distType = NORM_L2SQR);

        //!Does k-means procedure on GPU
        // supports CV_32FC1/CV_32FC2/CV_32FC4 data type
        CV_EXPORTS double kmeans(const oclMat &src, int K, oclMat &bestLabels,
                                     TermCriteria criteria, int attemps, int flags, oclMat &centers);


        ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
        ///////////////////////////////////////////CascadeClassifier//////////////////////////////////////////////////////////////////
        ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

        class CV_EXPORTS_W OclCascadeClassifier : public  cv::CascadeClassifier
        {
        public:
            OclCascadeClassifier() {};
            ~OclCascadeClassifier() {};

            CvSeq* oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor,
                                        int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0));
            void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
                double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,
                Size minSize = Size(), Size maxSize = Size());
        };

        class CV_EXPORTS OclCascadeClassifierBuf : public  cv::CascadeClassifier
        {
        public:
            OclCascadeClassifierBuf() :
                m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {}

            ~OclCascadeClassifierBuf() { release(); }

            void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
                                  double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,
                                  Size minSize = Size(), Size maxSize = Size());
            void release();

        private:
            void Init(const int rows, const int cols, double scaleFactor, int flags,
                      const int outputsz, const size_t localThreads[],
                      CvSize minSize, CvSize maxSize);
            void CreateBaseBufs(const int datasize, const int totalclassifier, const int flags, const int outputsz);
            void CreateFactorRelatedBufs(const int rows, const int cols, const int flags,
                                         const double scaleFactor, const size_t localThreads[],
                                         CvSize minSize, CvSize maxSize);
            void GenResult(CV_OUT std::vector<cv::Rect>& faces, const std::vector<cv::Rect> &rectList, const std::vector<int> &rweights);

            int m_rows;
            int m_cols;
            int m_flags;
            int m_loopcount;
            int m_nodenum;
            bool findBiggestObject;
            bool initialized;
            double m_scaleFactor;
            Size m_minSize;
            Size m_maxSize;
            vector<CvSize> sizev;
            vector<float> scalev;
            oclMat gimg1, gsum, gsqsum;
            void * buffers;
        };


        /////////////////////////////// Pyramid /////////////////////////////////////
        CV_EXPORTS void pyrDown(const oclMat &src, oclMat &dst);

        //! upsamples the source image and then smoothes it
        CV_EXPORTS void pyrUp(const oclMat &src, oclMat &dst);

        //! performs linear blending of two images
        //! to avoid accuracy errors sum of weigths shouldn't be very close to zero
        // supports only CV_8UC1 source type
        CV_EXPORTS void blendLinear(const oclMat &img1, const oclMat &img2, const oclMat &weights1, const oclMat &weights2, oclMat &result);

        //! computes vertical sum, supports only CV_32FC1 images
        CV_EXPORTS void columnSum(const oclMat &src, oclMat &sum);

        ///////////////////////////////////////// match_template /////////////////////////////////////////////////////////////
        struct CV_EXPORTS MatchTemplateBuf
        {
            Size user_block_size;
            oclMat imagef, templf;
            std::vector<oclMat> images;
            std::vector<oclMat> image_sums;
            std::vector<oclMat> image_sqsums;
        };

        //! computes the proximity map for the raster template and the image where the template is searched for
        // Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4
        // Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4
        CV_EXPORTS void matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method);

        //! computes the proximity map for the raster template and the image where the template is searched for
        // Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4
        // Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4
        CV_EXPORTS void matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method, MatchTemplateBuf &buf);

        ///////////////////////////////////////////// Canny /////////////////////////////////////////////
        struct CV_EXPORTS CannyBuf;
        //! compute edges of the input image using Canny operator
        // Support CV_8UC1 only
        CV_EXPORTS void Canny(const oclMat &image, oclMat &edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
        CV_EXPORTS void Canny(const oclMat &image, CannyBuf &buf, oclMat &edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
        CV_EXPORTS void Canny(const oclMat &dx, const oclMat &dy, oclMat &edges, double low_thresh, double high_thresh, bool L2gradient = false);
        CV_EXPORTS void Canny(const oclMat &dx, const oclMat &dy, CannyBuf &buf, oclMat &edges, double low_thresh, double high_thresh, bool L2gradient = false);

        struct CV_EXPORTS CannyBuf
        {
            CannyBuf() : counter(1, 1, CV_32S) { }
            ~CannyBuf()
            {
                release();
            }
            explicit CannyBuf(const Size &image_size, int apperture_size = 3) : counter(1, 1, CV_32S)
            {
                create(image_size, apperture_size);
            }
            CannyBuf(const oclMat &dx_, const oclMat &dy_);

            void create(const Size &image_size, int apperture_size = 3);
            void release();
            oclMat dx, dy;
            oclMat dx_buf, dy_buf;
            oclMat edgeBuf;
            oclMat trackBuf1, trackBuf2;
            oclMat counter;
            Ptr<FilterEngine_GPU> filterDX, filterDY;
        };

        ///////////////////////////////////////// clAmdFft related /////////////////////////////////////////
        //! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
        //! Param dft_size is the size of DFT transform.
        //!
        //! For complex-to-real transform it is assumed that the source matrix is packed in CLFFT's format.
        // support src type of CV32FC1, CV32FC2
        // support flags: DFT_INVERSE, DFT_REAL_OUTPUT, DFT_COMPLEX_OUTPUT, DFT_ROWS
        // dft_size is the size of original input, which is used for transformation from complex to real.
        // dft_size must be powers of 2, 3 and 5
        // real to complex dft requires at least v1.8 clAmdFft
        // real to complex dft output is not the same with cpu version
        // real to complex and complex to real does not support DFT_ROWS
        CV_EXPORTS void dft(const oclMat &src, oclMat &dst, Size dft_size = Size(), int flags = 0);

        //! implements generalized matrix product algorithm GEMM from BLAS
        // The functionality requires clAmdBlas library
        // only support type CV_32FC1
        // flag GEMM_3_T is not supported
        CV_EXPORTS void gemm(const oclMat &src1, const oclMat &src2, double alpha,
                             const oclMat &src3, double beta, oclMat &dst, int flags = 0);

        //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
        struct CV_EXPORTS HOGDescriptor
        {
            enum { DEFAULT_WIN_SIGMA = -1 };
            enum { DEFAULT_NLEVELS = 64 };
            enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
            HOGDescriptor(Size win_size = Size(64, 128), Size block_size = Size(16, 16),
                          Size block_stride = Size(8, 8), Size cell_size = Size(8, 8),
                          int nbins = 9, double win_sigma = DEFAULT_WIN_SIGMA,
                          double threshold_L2hys = 0.2, bool gamma_correction = true,
                          int nlevels = DEFAULT_NLEVELS);

            size_t getDescriptorSize() const;
            size_t getBlockHistogramSize() const;
            void setSVMDetector(const vector<float> &detector);
            static vector<float> getDefaultPeopleDetector();
            static vector<float> getPeopleDetector48x96();
            static vector<float> getPeopleDetector64x128();
            void detect(const oclMat &img, vector<Point> &found_locations,
                        double hit_threshold = 0, Size win_stride = Size(),
                        Size padding = Size());
            void detectMultiScale(const oclMat &img, vector<Rect> &found_locations,
                                  double hit_threshold = 0, Size win_stride = Size(),
                                  Size padding = Size(), double scale0 = 1.05,
                                  int group_threshold = 2);
            void getDescriptors(const oclMat &img, Size win_stride,
                                oclMat &descriptors,
                                int descr_format = DESCR_FORMAT_COL_BY_COL);
            Size win_size;
            Size block_size;
            Size block_stride;
            Size cell_size;

            int nbins;
            double win_sigma;
            double threshold_L2hys;
            bool gamma_correction;
            int nlevels;

        protected:
            // initialize buffers; only need to do once in case of multiscale detection
            void init_buffer(const oclMat &img, Size win_stride);
            void computeBlockHistograms(const oclMat &img);
            void computeGradient(const oclMat &img, oclMat &grad, oclMat &qangle);
            double getWinSigma() const;
            bool checkDetectorSize() const;

            static int numPartsWithin(int size, int part_size, int stride);
            static Size numPartsWithin(Size size, Size part_size, Size stride);

            // Coefficients of the separating plane
            float free_coef;
            oclMat detector;
            // Results of the last classification step
            oclMat labels;
            Mat labels_host;
            // Results of the last histogram evaluation step
            oclMat block_hists;
            // Gradients conputation results
            oclMat grad, qangle;
            // scaled image
            oclMat image_scale;
            // effect size of input image (might be different from original size after scaling)
            Size effect_size;

        private:
            oclMat gauss_w_lut;
        };


        ////////////////////////feature2d_ocl/////////////////
        /****************************************************************************************\
        *                                      Distance                                          *
        \****************************************************************************************/
        template<typename T>
        struct CV_EXPORTS Accumulator
        {
            typedef T Type;
        };
        template<> struct Accumulator<unsigned char>
        {
            typedef float Type;
        };
        template<> struct Accumulator<unsigned short>
        {
            typedef float Type;
        };
        template<> struct Accumulator<char>
        {
            typedef float Type;
        };
        template<> struct Accumulator<short>
        {
            typedef float Type;
        };

        /*
         * Manhattan distance (city block distance) functor
         */
        template<class T>
        struct CV_EXPORTS L1
        {
            enum { normType = NORM_L1 };
            typedef T ValueType;
            typedef typename Accumulator<T>::Type ResultType;

            ResultType operator()( const T *a, const T *b, int size ) const
            {
                return normL1<ValueType, ResultType>(a, b, size);
            }
        };

        /*
         * Euclidean distance functor
         */
        template<class T>
        struct CV_EXPORTS L2
        {
            enum { normType = NORM_L2 };
            typedef T ValueType;
            typedef typename Accumulator<T>::Type ResultType;

            ResultType operator()( const T *a, const T *b, int size ) const
            {
                return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
            }
        };

        /*
         * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
         * bit count of A exclusive XOR'ed with B
         */
        struct CV_EXPORTS Hamming
        {
            enum { normType = NORM_HAMMING };
            typedef unsigned char ValueType;
            typedef int ResultType;

            /** this will count the bits in a ^ b
             */
            ResultType operator()( const unsigned char *a, const unsigned char *b, int size ) const
            {
                return normHamming(a, b, size);
            }
        };

        ////////////////////////////////// BruteForceMatcher //////////////////////////////////

        class CV_EXPORTS BruteForceMatcher_OCL_base
        {
        public:
            enum DistType {L1Dist = 0, L2Dist, HammingDist};
            explicit BruteForceMatcher_OCL_base(DistType distType = L2Dist);
            // Add descriptors to train descriptor collection
            void add(const std::vector<oclMat> &descCollection);
            // Get train descriptors collection
            const std::vector<oclMat> &getTrainDescriptors() const;
            // Clear train descriptors collection
            void clear();
            // Return true if there are not train descriptors in collection
            bool empty() const;

            // Return true if the matcher supports mask in match methods
            bool isMaskSupported() const;

            // Find one best match for each query descriptor
            void matchSingle(const oclMat &query, const oclMat &train,
                             oclMat &trainIdx, oclMat &distance,
                             const oclMat &mask = oclMat());

            // Download trainIdx and distance and convert it to CPU vector with DMatch
            static void matchDownload(const oclMat &trainIdx, const oclMat &distance, std::vector<DMatch> &matches);
            // Convert trainIdx and distance to vector with DMatch
            static void matchConvert(const Mat &trainIdx, const Mat &distance, std::vector<DMatch> &matches);

            // Find one best match for each query descriptor
            void match(const oclMat &query, const oclMat &train, std::vector<DMatch> &matches, const oclMat &mask = oclMat());

            // Make gpu collection of trains and masks in suitable format for matchCollection function
            void makeGpuCollection(oclMat &trainCollection, oclMat &maskCollection, const std::vector<oclMat> &masks = std::vector<oclMat>());


            // Find one best match from train collection for each query descriptor
            void matchCollection(const oclMat &query, const oclMat &trainCollection,
                                 oclMat &trainIdx, oclMat &imgIdx, oclMat &distance,
                                 const oclMat &masks = oclMat());

            // Download trainIdx, imgIdx and distance and convert it to vector with DMatch
            static void matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, std::vector<DMatch> &matches);
            // Convert trainIdx, imgIdx and distance to vector with DMatch
            static void matchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, std::vector<DMatch> &matches);

            // Find one best match from train collection for each query descriptor.
            void match(const oclMat &query, std::vector<DMatch> &matches, const std::vector<oclMat> &masks = std::vector<oclMat>());

            // Find k best matches for each query descriptor (in increasing order of distances)
            void knnMatchSingle(const oclMat &query, const oclMat &train,
                                oclMat &trainIdx, oclMat &distance, oclMat &allDist, int k,
                                const oclMat &mask = oclMat());

            // Download trainIdx and distance and convert it to vector with DMatch
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            static void knnMatchDownload(const oclMat &trainIdx, const oclMat &distance,
                                         std::vector< std::vector<DMatch> > &matches, bool compactResult = false);

            // Convert trainIdx and distance to vector with DMatch
            static void knnMatchConvert(const Mat &trainIdx, const Mat &distance,
                                        std::vector< std::vector<DMatch> > &matches, bool compactResult = false);

            // Find k best matches for each query descriptor (in increasing order of distances).
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            void knnMatch(const oclMat &query, const oclMat &train,
                          std::vector< std::vector<DMatch> > &matches, int k, const oclMat &mask = oclMat(),
                          bool compactResult = false);

            // Find k best matches from train collection for each query descriptor (in increasing order of distances)
            void knnMatch2Collection(const oclMat &query, const oclMat &trainCollection,
                                     oclMat &trainIdx, oclMat &imgIdx, oclMat &distance,
                                     const oclMat &maskCollection = oclMat());

            // Download trainIdx and distance and convert it to vector with DMatch
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            static void knnMatch2Download(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance,
                                          std::vector< std::vector<DMatch> > &matches, bool compactResult = false);

            // Convert trainIdx and distance to vector with DMatch
            static void knnMatch2Convert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance,
                                         std::vector< std::vector<DMatch> > &matches, bool compactResult = false);

            // Find k best matches  for each query descriptor (in increasing order of distances).
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            void knnMatch(const oclMat &query, std::vector< std::vector<DMatch> > &matches, int k,
                          const std::vector<oclMat> &masks = std::vector<oclMat>(), bool compactResult = false);

            // Find best matches for each query descriptor which have distance less than maxDistance.
            // nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
            // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
            // because it didn't have enough memory.
            // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
            // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
            // Matches doesn't sorted.
            void radiusMatchSingle(const oclMat &query, const oclMat &train,
                                   oclMat &trainIdx, oclMat &distance, oclMat &nMatches, float maxDistance,
                                   const oclMat &mask = oclMat());

            // Download trainIdx, nMatches and distance and convert it to vector with DMatch.
            // matches will be sorted in increasing order of distances.
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            static void radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches,
                                            std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
            // Convert trainIdx, nMatches and distance to vector with DMatch.
            static void radiusMatchConvert(const Mat &trainIdx, const Mat &distance, const Mat &nMatches,
                                           std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
            // Find best matches for each query descriptor which have distance less than maxDistance
            // in increasing order of distances).
            void radiusMatch(const oclMat &query, const oclMat &train,
                             std::vector< std::vector<DMatch> > &matches, float maxDistance,
                             const oclMat &mask = oclMat(), bool compactResult = false);
            // Find best matches for each query descriptor which have distance less than maxDistance.
            // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
            // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
            // Matches doesn't sorted.
            void radiusMatchCollection(const oclMat &query, oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, oclMat &nMatches, float maxDistance,
                                       const std::vector<oclMat> &masks = std::vector<oclMat>());
            // Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
            // matches will be sorted in increasing order of distances.
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            static void radiusMatchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, const oclMat &nMatches,
                                            std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
            // Convert trainIdx, nMatches and distance to vector with DMatch.
            static void radiusMatchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, const Mat &nMatches,
                                           std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
            // Find best matches from train collection for each query descriptor which have distance less than
            // maxDistance (in increasing order of distances).
            void radiusMatch(const oclMat &query, std::vector< std::vector<DMatch> > &matches, float maxDistance,
                             const std::vector<oclMat> &masks = std::vector<oclMat>(), bool compactResult = false);
            DistType distType;
        private:
            std::vector<oclMat> trainDescCollection;
        };

        template <class Distance>
        class CV_EXPORTS BruteForceMatcher_OCL;

        template <typename T>
        class CV_EXPORTS BruteForceMatcher_OCL< L1<T> > : public BruteForceMatcher_OCL_base
        {
        public:
            explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L1Dist) {}
            explicit BruteForceMatcher_OCL(L1<T> /*d*/) : BruteForceMatcher_OCL_base(L1Dist) {}
        };

        template <typename T>
        class CV_EXPORTS BruteForceMatcher_OCL< L2<T> > : public BruteForceMatcher_OCL_base
        {
        public:
            explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L2Dist) {}
            explicit BruteForceMatcher_OCL(L2<T> /*d*/) : BruteForceMatcher_OCL_base(L2Dist) {}
        };

        template <> class CV_EXPORTS BruteForceMatcher_OCL< Hamming > : public BruteForceMatcher_OCL_base
        {
        public:
            explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(HammingDist) {}
            explicit BruteForceMatcher_OCL(Hamming /*d*/) : BruteForceMatcher_OCL_base(HammingDist) {}
        };

        class CV_EXPORTS BFMatcher_OCL : public BruteForceMatcher_OCL_base
        {
        public:
            explicit BFMatcher_OCL(int norm = NORM_L2) : BruteForceMatcher_OCL_base(norm == NORM_L1 ? L1Dist : norm == NORM_L2 ? L2Dist : HammingDist) {}
        };

        class CV_EXPORTS GoodFeaturesToTrackDetector_OCL
        {
        public:
            explicit GoodFeaturesToTrackDetector_OCL(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
                int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);

            //! return 1 rows matrix with CV_32FC2 type
            void operator ()(const oclMat& image, oclMat& corners, const oclMat& mask = oclMat());
            //! download points of type Point2f to a vector. the vector's content will be erased
            void downloadPoints(const oclMat &points, vector<Point2f> &points_v);

            int maxCorners;
            double qualityLevel;
            double minDistance;

            int blockSize;
            bool useHarrisDetector;
            double harrisK;
            void releaseMemory()
            {
                Dx_.release();
                Dy_.release();
                eig_.release();
                minMaxbuf_.release();
                tmpCorners_.release();
            }
        private:
            oclMat Dx_;
            oclMat Dy_;
            oclMat eig_;
            oclMat eig_minmax_;
            oclMat minMaxbuf_;
            oclMat tmpCorners_;
            oclMat counter_;
        };

        inline GoodFeaturesToTrackDetector_OCL::GoodFeaturesToTrackDetector_OCL(int maxCorners_, double qualityLevel_, double minDistance_,
            int blockSize_, bool useHarrisDetector_, double harrisK_)
        {
            maxCorners = maxCorners_;
            qualityLevel = qualityLevel_;
            minDistance = minDistance_;
            blockSize = blockSize_;
            useHarrisDetector = useHarrisDetector_;
            harrisK = harrisK_;
        }

        /////////////////////////////// PyrLKOpticalFlow /////////////////////////////////////
        class CV_EXPORTS PyrLKOpticalFlow
        {
        public:
            PyrLKOpticalFlow()
            {
                winSize = Size(21, 21);
                maxLevel = 3;
                iters = 30;
                derivLambda = 0.5;
                useInitialFlow = false;
                minEigThreshold = 1e-4f;
                getMinEigenVals = false;
                isDeviceArch11_ = false;
            }

            void sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts,
                        oclMat &status, oclMat *err = 0);
            void dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err = 0);
            Size winSize;
            int maxLevel;
            int iters;
            double derivLambda;
            bool useInitialFlow;
            float minEigThreshold;
            bool getMinEigenVals;
            void releaseMemory()
            {
                dx_calcBuf_.release();
                dy_calcBuf_.release();

                prevPyr_.clear();
                nextPyr_.clear();

                dx_buf_.release();
                dy_buf_.release();
            }
        private:
            void calcSharrDeriv(const oclMat &src, oclMat &dx, oclMat &dy);
            void buildImagePyramid(const oclMat &img0, vector<oclMat> &pyr, bool withBorder);

            oclMat dx_calcBuf_;
            oclMat dy_calcBuf_;

            vector<oclMat> prevPyr_;
            vector<oclMat> nextPyr_;

            oclMat dx_buf_;
            oclMat dy_buf_;
            oclMat uPyr_[2];
            oclMat vPyr_[2];
            bool isDeviceArch11_;
        };

        class CV_EXPORTS FarnebackOpticalFlow
        {
        public:
            FarnebackOpticalFlow();

            int numLevels;
            double pyrScale;
            bool fastPyramids;
            int winSize;
            int numIters;
            int polyN;
            double polySigma;
            int flags;

            void operator ()(const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy);

            void releaseMemory();

        private:
            void setGaussianBlurKernel(const float *c_gKer, int ksizeHalf);

            void gaussianBlurOcl(const oclMat &src, int ksizeHalf, oclMat &dst);

            void polynomialExpansionOcl(
                const oclMat &src, int polyN, oclMat &dst);

            void gaussianBlur5Ocl(
                const oclMat &src, int ksizeHalf, oclMat &dst);

            void prepareGaussian(
                int n, double sigma, float *g, float *xg, float *xxg,
                double &ig11, double &ig03, double &ig33, double &ig55);

            void setPolynomialExpansionConsts(int n, double sigma);

            void updateFlow_boxFilter(
                const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy,
                oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);

            void updateFlow_gaussianBlur(
                const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy,
                oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);

            oclMat frames_[2];
            oclMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
            std::vector<oclMat> pyramid0_, pyramid1_;
            float ig[4];
            oclMat gMat;
            oclMat xgMat;
            oclMat xxgMat;
            oclMat gKerMat;
        };

        //////////////// build warping maps ////////////////////
        //! builds plane warping maps
        CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, const Mat &T, float scale, oclMat &map_x, oclMat &map_y);
        //! builds cylindrical warping maps
        CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y);
        //! builds spherical warping maps
        CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y);
        //! builds Affine warping maps
        CV_EXPORTS void buildWarpAffineMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap);

        //! builds Perspective warping maps
        CV_EXPORTS void buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap);

        ///////////////////////////////////// interpolate frames //////////////////////////////////////////////
        //! Interpolate frames (images) using provided optical flow (displacement field).
        //! frame0   - frame 0 (32-bit floating point images, single channel)
        //! frame1   - frame 1 (the same type and size)
        //! fu       - forward horizontal displacement
        //! fv       - forward vertical displacement
        //! bu       - backward horizontal displacement
        //! bv       - backward vertical displacement
        //! pos      - new frame position
        //! newFrame - new frame
        //! buf      - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 oclMat;
        //!            occlusion masks            0, occlusion masks            1,
        //!            interpolated forward flow  0, interpolated forward flow  1,
        //!            interpolated backward flow 0, interpolated backward flow 1
        //!
        CV_EXPORTS void interpolateFrames(const oclMat &frame0, const oclMat &frame1,
                                          const oclMat &fu, const oclMat &fv,
                                          const oclMat &bu, const oclMat &bv,
                                          float pos, oclMat &newFrame, oclMat &buf);

        //! computes moments of the rasterized shape or a vector of points
        //! _array should be a vector a points standing for the contour
        CV_EXPORTS Moments ocl_moments(InputArray contour);
        //! src should be a general image uploaded to the GPU.
        //! the supported oclMat type are CV_8UC1, CV_16UC1, CV_16SC1, CV_32FC1 and CV_64FC1
        //! to use type of CV_64FC1, the GPU should support CV_64FC1
        CV_EXPORTS Moments ocl_moments(oclMat& src, bool binary);

        class CV_EXPORTS StereoBM_OCL
        {
        public:
            enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };

            enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };

            //! the default constructor
            StereoBM_OCL();
            //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
            StereoBM_OCL(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);

            //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
            //! Output disparity has CV_8U type.
            void operator() ( const oclMat &left, const oclMat &right, oclMat &disparity);

            //! Some heuristics that tries to estmate
            // if current GPU will be faster then CPU in this algorithm.
            // It queries current active device.
            static bool checkIfGpuCallReasonable();

            int preset;
            int ndisp;
            int winSize;

            // If avergeTexThreshold  == 0 => post procesing is disabled
            // If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
            // SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
            // i.e. input left image is low textured.
            float avergeTexThreshold;
        private:
            oclMat minSSD, leBuf, riBuf;
        };

        class CV_EXPORTS StereoBeliefPropagation
        {
        public:
            enum { DEFAULT_NDISP  = 64 };
            enum { DEFAULT_ITERS  = 5  };
            enum { DEFAULT_LEVELS = 5  };
            static void estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels);
            explicit StereoBeliefPropagation(int ndisp  = DEFAULT_NDISP,
                                             int iters  = DEFAULT_ITERS,
                                             int levels = DEFAULT_LEVELS,
                                             int msg_type = CV_16S);
            StereoBeliefPropagation(int ndisp, int iters, int levels,
                                    float max_data_term, float data_weight,
                                    float max_disc_term, float disc_single_jump,
                                    int msg_type = CV_32F);
            void operator()(const oclMat &left, const oclMat &right, oclMat &disparity);
            void operator()(const oclMat &data, oclMat &disparity);
            int ndisp;
            int iters;
            int levels;
            float max_data_term;
            float data_weight;
            float max_disc_term;
            float disc_single_jump;
            int msg_type;
        private:
            oclMat u, d, l, r, u2, d2, l2, r2;
            std::vector<oclMat> datas;
            oclMat out;
        };

        class CV_EXPORTS StereoConstantSpaceBP
        {
        public:
            enum { DEFAULT_NDISP    = 128 };
            enum { DEFAULT_ITERS    = 8   };
            enum { DEFAULT_LEVELS   = 4   };
            enum { DEFAULT_NR_PLANE = 4   };
            static void estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels, int &nr_plane);
            explicit StereoConstantSpaceBP(
                int ndisp    = DEFAULT_NDISP,
                int iters    = DEFAULT_ITERS,
                int levels   = DEFAULT_LEVELS,
                int nr_plane = DEFAULT_NR_PLANE,
                int msg_type = CV_32F);
            StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
                float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
                int min_disp_th = 0,
                int msg_type = CV_32F);
            void operator()(const oclMat &left, const oclMat &right, oclMat &disparity);
            int ndisp;
            int iters;
            int levels;
            int nr_plane;
            float max_data_term;
            float data_weight;
            float max_disc_term;
            float disc_single_jump;
            int min_disp_th;
            int msg_type;
            bool use_local_init_data_cost;
        private:
            oclMat u[2], d[2], l[2], r[2];
            oclMat disp_selected_pyr[2];
            oclMat data_cost;
            oclMat data_cost_selected;
            oclMat temp;
            oclMat out;
        };

        // Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
        //
        // see reference:
        //   [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
        //   [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
        class CV_EXPORTS OpticalFlowDual_TVL1_OCL
        {
        public:
            OpticalFlowDual_TVL1_OCL();

            void operator ()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy);

            void collectGarbage();

            /**
            * Time step of the numerical scheme.
            */
            double tau;

            /**
            * Weight parameter for the data term, attachment parameter.
            * This is the most relevant parameter, which determines the smoothness of the output.
            * The smaller this parameter is, the smoother the solutions we obtain.
            * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
            */
            double lambda;

            /**
            * Weight parameter for (u - v)^2, tightness parameter.
            * It serves as a link between the attachment and the regularization terms.
            * In theory, it should have a small value in order to maintain both parts in correspondence.
            * The method is stable for a large range of values of this parameter.
            */
            double theta;

            /**
            * Number of scales used to create the pyramid of images.
            */
            int nscales;

            /**
            * Number of warpings per scale.
            * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
            * This is a parameter that assures the stability of the method.
            * It also affects the running time, so it is a compromise between speed and accuracy.
            */
            int warps;

            /**
            * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
            * A small value will yield more accurate solutions at the expense of a slower convergence.
            */
            double epsilon;

            /**
            * Stopping criterion iterations number used in the numerical scheme.
            */
            int iterations;

            bool useInitialFlow;

        private:
            void procOneScale(const oclMat& I0, const oclMat& I1, oclMat& u1, oclMat& u2);

            std::vector<oclMat> I0s;
            std::vector<oclMat> I1s;
            std::vector<oclMat> u1s;
            std::vector<oclMat> u2s;

            oclMat I1x_buf;
            oclMat I1y_buf;

            oclMat I1w_buf;
            oclMat I1wx_buf;
            oclMat I1wy_buf;

            oclMat grad_buf;
            oclMat rho_c_buf;

            oclMat p11_buf;
            oclMat p12_buf;
            oclMat p21_buf;
            oclMat p22_buf;

            oclMat diff_buf;
            oclMat norm_buf;
        };
        // current supported sorting methods
        enum
        {
            SORT_BITONIC,   // only support power-of-2 buffer size
            SORT_SELECTION, // cannot sort duplicate keys
            SORT_MERGE,
            SORT_RADIX      // only support signed int/float keys(CV_32S/CV_32F)
        };
        //! Returns the sorted result of all the elements in input based on equivalent keys.
        //
        //  The element unit in the values to be sorted is determined from the data type,
        //  i.e., a CV_32FC2 input {a1a2, b1b2} will be considered as two elements, regardless its
        //  matrix dimension.
        //  both keys and values will be sorted inplace
        //  Key needs to be single channel oclMat.
        //
        //  Example:
        //  input -
        //    keys   = {2,    3,   1}   (CV_8UC1)
        //    values = {10,5, 4,3, 6,2} (CV_8UC2)
        //  sortByKey(keys, values, SORT_SELECTION, false);
        //  output -
        //    keys   = {1,    2,   3}   (CV_8UC1)
        //    values = {6,2, 10,5, 4,3} (CV_8UC2)
        CV_EXPORTS void sortByKey(oclMat& keys, oclMat& values, int method, bool isGreaterThan = false);
        /*!Base class for MOG and MOG2!*/
        class CV_EXPORTS BackgroundSubtractor
        {
        public:
            //! the virtual destructor
            virtual ~BackgroundSubtractor();
            //! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image.
            virtual void operator()(const oclMat& image, oclMat& fgmask, float learningRate);

            //! computes a background image
            virtual void getBackgroundImage(oclMat& backgroundImage) const = 0;
        };
                /*!
        Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm

        The class implements the following algorithm:
        "An improved adaptive background mixture model for real-time tracking with shadow detection"
        P. KadewTraKuPong and R. Bowden,
        Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
        http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
        */
        class CV_EXPORTS MOG: public cv::ocl::BackgroundSubtractor
        {
        public:
            //! the default constructor
            MOG(int nmixtures = -1);

            //! re-initiaization method
            void initialize(Size frameSize, int frameType);

            //! the update operator
            void operator()(const oclMat& frame, oclMat& fgmask, float learningRate = 0.f);

            //! computes a background image which are the mean of all background gaussians
            void getBackgroundImage(oclMat& backgroundImage) const;

            //! releases all inner buffers
            void release();

            int history;
            float varThreshold;
            float backgroundRatio;
            float noiseSigma;

        private:
            int nmixtures_;

            Size frameSize_;
            int frameType_;
            int nframes_;

            oclMat weight_;
            oclMat sortKey_;
            oclMat mean_;
            oclMat var_;
        };

        /*!
        The class implements the following algorithm:
        "Improved adaptive Gausian mixture model for background subtraction"
        Z.Zivkovic
        International Conference Pattern Recognition, UK, August, 2004.
        http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
        */
        class CV_EXPORTS MOG2: public cv::ocl::BackgroundSubtractor
        {
        public:
            //! the default constructor
            MOG2(int nmixtures = -1);

            //! re-initiaization method
            void initialize(Size frameSize, int frameType);

            //! the update operator
            void operator()(const oclMat& frame, oclMat& fgmask, float learningRate = -1.0f);

            //! computes a background image which are the mean of all background gaussians
            void getBackgroundImage(oclMat& backgroundImage) const;

            //! releases all inner buffers
            void release();

            // parameters
            // you should call initialize after parameters changes

            int history;

            //! here it is the maximum allowed number of mixture components.
            //! Actual number is determined dynamically per pixel
            float varThreshold;
            // threshold on the squared Mahalanobis distance to decide if it is well described
            // by the background model or not. Related to Cthr from the paper.
            // This does not influence the update of the background. A typical value could be 4 sigma
            // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.

            /////////////////////////
            // less important parameters - things you might change but be carefull
            ////////////////////////

            float backgroundRatio;
            // corresponds to fTB=1-cf from the paper
            // TB - threshold when the component becomes significant enough to be included into
            // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
            // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
            // it is considered foreground
            // float noiseSigma;
            float varThresholdGen;

            //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
            //when a sample is close to the existing components. If it is not close
            //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
            //Smaller Tg leads to more generated components and higher Tg might make
            //lead to small number of components but they can grow too large
            float fVarInit;
            float fVarMin;
            float fVarMax;

            //initial variance  for the newly generated components.
            //It will will influence the speed of adaptation. A good guess should be made.
            //A simple way is to estimate the typical standard deviation from the images.
            //I used here 10 as a reasonable value
            // min and max can be used to further control the variance
            float fCT; //CT - complexity reduction prior
            //this is related to the number of samples needed to accept that a component
            //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
            //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)

            //shadow detection parameters
            bool bShadowDetection; //default 1 - do shadow detection
            unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
            float fTau;
            // Tau - shadow threshold. The shadow is detected if the pixel is darker
            //version of the background. Tau is a threshold on how much darker the shadow can be.
            //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
            //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.

        private:
            int nmixtures_;

            Size frameSize_;
            int frameType_;
            int nframes_;

            oclMat weight_;
            oclMat variance_;
            oclMat mean_;

            oclMat bgmodelUsedModes_; //keep track of number of modes per pixel
        };

        /*!***************Kalman Filter*************!*/
        class CV_EXPORTS KalmanFilter
        {
        public:
            KalmanFilter();
            //! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
            KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
            //! re-initializes Kalman filter. The previous content is destroyed.
            void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);

            const oclMat& predict(const oclMat& control=oclMat());
            const oclMat& correct(const oclMat& measurement);

            oclMat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
            oclMat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
            oclMat transitionMatrix;   //!< state transition matrix (A)
            oclMat controlMatrix;      //!< control matrix (B) (not used if there is no control)
            oclMat measurementMatrix;  //!< measurement matrix (H)
            oclMat processNoiseCov;    //!< process noise covariance matrix (Q)
            oclMat measurementNoiseCov;//!< measurement noise covariance matrix (R)
            oclMat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
            oclMat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
            oclMat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
        private:
            oclMat temp1;
            oclMat temp2;
            oclMat temp3;
            oclMat temp4;
            oclMat temp5;
        };

        /*!***************K Nearest Neighbour*************!*/
        class CV_EXPORTS KNearestNeighbour: public CvKNearest
        {
        public:
            KNearestNeighbour();
            ~KNearestNeighbour();

            bool train(const Mat& trainData, Mat& labels, Mat& sampleIdx = Mat().setTo(Scalar::all(0)),
                bool isRegression = false, int max_k = 32, bool updateBase = false);

            void clear();

            void find_nearest(const oclMat& samples, int k, oclMat& lables);

        private:
            oclMat samples_ocl;
        };

        /*!***************  SVM  *************!*/
        class CV_EXPORTS CvSVM_OCL : public CvSVM
        {
        public:
            CvSVM_OCL();

            CvSVM_OCL(const cv::Mat& trainData, const cv::Mat& responses,
                      const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
                      CvSVMParams params=CvSVMParams());
            CV_WRAP float predict( const int row_index, Mat& src, bool returnDFVal=false ) const;
            CV_WRAP void predict( cv::InputArray samples, cv::OutputArray results ) const;
            CV_WRAP float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
            float predict( const CvMat* samples, CV_OUT CvMat* results ) const;

        protected:
            float predict( const int row_index, int row_len, Mat& src, bool returnDFVal=false ) const;
            void create_kernel();
            void create_solver();
        };

        /*!***************  END  *************!*/
    }
}
#if defined _MSC_VER && _MSC_VER >= 1200
#  pragma warning( push)
#  pragma warning( disable: 4267)
#endif
#include "opencv2/ocl/matrix_operations.hpp"
#if defined _MSC_VER && _MSC_VER >= 1200
#  pragma warning( pop)
#endif

#endif /* __OPENCV_OCL_HPP__ */