summaryrefslogtreecommitdiff
path: root/thirdparty/raspberrypi/includes/opencv2/gpu/device/block.hpp
blob: 6cc00aed4d61892548d1e0d307c6170921540a1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_GPU_DEVICE_BLOCK_HPP__
#define __OPENCV_GPU_DEVICE_BLOCK_HPP__

namespace cv { namespace gpu { namespace device
{
    struct Block
    {
        static __device__ __forceinline__ unsigned int id()
        {
            return blockIdx.x;
        }

        static __device__ __forceinline__ unsigned int stride()
        {
            return blockDim.x * blockDim.y * blockDim.z;
        }

        static __device__ __forceinline__ void sync()
        {
            __syncthreads();
        }

        static __device__ __forceinline__ int flattenedThreadId()
        {
            return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
        }

        template<typename It, typename T>
        static __device__ __forceinline__ void fill(It beg, It end, const T& value)
        {
            int STRIDE = stride();
            It t = beg + flattenedThreadId();

            for(; t < end; t += STRIDE)
                *t = value;
        }

        template<typename OutIt, typename T>
        static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
        {
            int STRIDE = stride();
            int tid = flattenedThreadId();
            value += tid;

            for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
                *t = value;
        }

        template<typename InIt, typename OutIt>
        static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
        {
            int STRIDE = stride();
            InIt  t = beg + flattenedThreadId();
            OutIt o = out + (t - beg);

            for(; t < end; t += STRIDE, o += STRIDE)
                *o = *t;
        }

        template<typename InIt, typename OutIt, class UnOp>
        static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op)
        {
            int STRIDE = stride();
            InIt  t = beg + flattenedThreadId();
            OutIt o = out + (t - beg);

            for(; t < end; t += STRIDE, o += STRIDE)
                *o = op(*t);
        }

        template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
        static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
        {
            int STRIDE = stride();
            InIt1 t1 = beg1 + flattenedThreadId();
            InIt2 t2 = beg2 + flattenedThreadId();
            OutIt o  = out + (t1 - beg1);

            for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
                *o = op(*t1, *t2);
        }

        template<int CTA_SIZE, typename T, class BinOp>
        static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
        {
            int tid = flattenedThreadId();
            T val =  buffer[tid];

            if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
            if (CTA_SIZE >=  512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
            if (CTA_SIZE >=  256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
            if (CTA_SIZE >=  128) { if (tid <  64) buffer[tid] = val = op(val, buffer[tid +  64]); __syncthreads(); }

            if (tid < 32)
            {
                if (CTA_SIZE >=   64) { buffer[tid] = val = op(val, buffer[tid +  32]); }
                if (CTA_SIZE >=   32) { buffer[tid] = val = op(val, buffer[tid +  16]); }
                if (CTA_SIZE >=   16) { buffer[tid] = val = op(val, buffer[tid +   8]); }
                if (CTA_SIZE >=    8) { buffer[tid] = val = op(val, buffer[tid +   4]); }
                if (CTA_SIZE >=    4) { buffer[tid] = val = op(val, buffer[tid +   2]); }
                if (CTA_SIZE >=    2) { buffer[tid] = val = op(val, buffer[tid +   1]); }
            }
        }

        template<int CTA_SIZE, typename T, class BinOp>
        static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
        {
            int tid = flattenedThreadId();
            T val =  buffer[tid] = init;
            __syncthreads();

            if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
            if (CTA_SIZE >=  512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
            if (CTA_SIZE >=  256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
            if (CTA_SIZE >=  128) { if (tid <  64) buffer[tid] = val = op(val, buffer[tid +  64]); __syncthreads(); }

            if (tid < 32)
            {
                if (CTA_SIZE >=   64) { buffer[tid] = val = op(val, buffer[tid +  32]); }
                if (CTA_SIZE >=   32) { buffer[tid] = val = op(val, buffer[tid +  16]); }
                if (CTA_SIZE >=   16) { buffer[tid] = val = op(val, buffer[tid +   8]); }
                if (CTA_SIZE >=    8) { buffer[tid] = val = op(val, buffer[tid +   4]); }
                if (CTA_SIZE >=    4) { buffer[tid] = val = op(val, buffer[tid +   2]); }
                if (CTA_SIZE >=    2) { buffer[tid] = val = op(val, buffer[tid +   1]); }
            }
            __syncthreads();
            return buffer[0];
        }

        template <typename T, class BinOp>
        static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
        {
            int ftid = flattenedThreadId();
            int sft = stride();

            if (sft < n)
            {
                for (unsigned int i = sft + ftid; i < n; i += sft)
                    data[ftid] = op(data[ftid], data[i]);

                __syncthreads();

                n = sft;
            }

            while (n > 1)
            {
                unsigned int half = n/2;

                if (ftid < half)
                    data[ftid] = op(data[ftid], data[n - ftid - 1]);

                __syncthreads();

                n = n - half;
            }
        }
    };
}}}

#endif /* __OPENCV_GPU_DEVICE_BLOCK_HPP__ */