summaryrefslogtreecommitdiff
path: root/thirdparty/includes/OpenCV/opencv2/flann/nn_index.h
blob: 4a874f586720582b88c19be55910d4edb0270286 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_NNINDEX_H
#define OPENCV_FLANN_NNINDEX_H

#include <string>

#include "general.h"
#include "matrix.h"
#include "result_set.h"
#include "params.h"

namespace cvflann
{

/**
 * Nearest-neighbour index base class
 */
template <typename Distance>
class NNIndex
{
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;

public:

    virtual ~NNIndex() {}

    /**
     * \brief Builds the index
     */
    virtual void buildIndex() = 0;

    /**
     * \brief implementation for algorithms of addable indexes after that.
     */
    virtual void addIndex(const Matrix<ElementType>& wholeData, const Matrix<ElementType>& additionalData) = 0;

    /**
     * \brief Perform k-nearest neighbor search
     * \param[in] queries The query points for which to find the nearest neighbors
     * \param[out] indices The indices of the nearest neighbors found
     * \param[out] dists Distances to the nearest neighbors found
     * \param[in] knn Number of nearest neighbors to return
     * \param[in] params Search parameters
     */
    virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
    {
        assert(queries.cols == veclen());
        assert(indices.rows >= queries.rows);
        assert(dists.rows >= queries.rows);
        assert(int(indices.cols) >= knn);
        assert(int(dists.cols) >= knn);

#if 0
        KNNResultSet<DistanceType> resultSet(knn);
        for (size_t i = 0; i < queries.rows; i++) {
            resultSet.init(indices[i], dists[i]);
            findNeighbors(resultSet, queries[i], params);
        }
#else
        KNNUniqueResultSet<DistanceType> resultSet(knn);
        for (size_t i = 0; i < queries.rows; i++) {
            resultSet.clear();
            findNeighbors(resultSet, queries[i], params);
            if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
            else resultSet.copy(indices[i], dists[i], knn);
        }
#endif
    }

    /**
     * \brief Perform radius search
     * \param[in] query The query point
     * \param[out] indices The indinces of the neighbors found within the given radius
     * \param[out] dists The distances to the nearest neighbors found
     * \param[in] radius The radius used for search
     * \param[in] params Search parameters
     * \returns Number of neighbors found
     */
    virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
    {
        if (query.rows != 1) {
            fprintf(stderr, "I can only search one feature at a time for range search\n");
            return -1;
        }
        assert(query.cols == veclen());
        assert(indices.cols == dists.cols);

        int n = 0;
        int* indices_ptr = NULL;
        DistanceType* dists_ptr = NULL;
        if (indices.cols > 0) {
            n = (int)indices.cols;
            indices_ptr = indices[0];
            dists_ptr = dists[0];
        }

        RadiusUniqueResultSet<DistanceType> resultSet((DistanceType)radius);
        resultSet.clear();
        findNeighbors(resultSet, query[0], params);
        if (n>0) {
            if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n);
            else resultSet.copy(indices_ptr, dists_ptr, n);
        }

        return (int)resultSet.size();
    }

    /**
     * \brief Saves the index to a stream
     * \param stream The stream to save the index to
     */
    virtual void saveIndex(FILE* stream) = 0;

    /**
     * \brief Loads the index from a stream
     * \param stream The stream from which the index is loaded
     */
    virtual void loadIndex(FILE* stream) = 0;

    /**
     * \returns number of features in this index.
     */
    virtual size_t size() const = 0;

    /**
     * \returns The dimensionality of the features in this index.
     */
    virtual size_t veclen() const = 0;

    /**
     * \returns The amount of memory (in bytes) used by the index.
     */
    virtual int usedMemory() const = 0;

    /**
     * \returns The index type (kdtree, kmeans,...)
     */
    virtual flann_algorithm_t getType() const = 0;

    /**
     * \returns The index parameters
     */
    virtual IndexParams getParameters() const = 0;


    /**
     * \brief Method that searches for nearest-neighbours
     */
    virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) = 0;
};

}

#endif //OPENCV_FLANN_NNINDEX_H