summaryrefslogtreecommitdiff
path: root/thirdparty/includes/OpenCV/opencv2/flann/index_testing.h
blob: d76400409a950a2f99d27061bc3d4a5368103ad9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_INDEX_TESTING_H_
#define OPENCV_FLANN_INDEX_TESTING_H_

#include <cstring>
#include <cassert>
#include <cmath>

#include "matrix.h"
#include "nn_index.h"
#include "result_set.h"
#include "logger.h"
#include "timer.h"


namespace cvflann
{

inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
{
    int count = 0;
    for (int i=0; i<n; ++i) {
        for (int k=0; k<n; ++k) {
            if (neighbors[i]==groundTruth[k]) {
                count++;
                break;
            }
        }
    }
    return count;
}


template <typename Distance>
typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
                                                    int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
{
    typedef typename Distance::ResultType DistanceType;

    DistanceType ret = 0;
    for (int i=0; i<n; ++i) {
        DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
        DistanceType num = distance(inputData[neighbors[i]], target, veclen);

        if ((den==0)&&(num==0)) {
            ret += 1;
        }
        else {
            ret += num/den;
        }
    }

    return ret;
}

template <typename Distance>
float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
                               const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
                               float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
{
    typedef typename Distance::ResultType DistanceType;

    if (matches.cols<size_t(nn)) {
        Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);

        throw FLANNException("Ground truth is not computed for as many neighbors as requested");
    }

    KNNResultSet<DistanceType> resultSet(nn+skipMatches);
    SearchParams searchParams(checks);

    std::vector<int> indices(nn+skipMatches);
    std::vector<DistanceType> dists(nn+skipMatches);
    int* neighbors = &indices[skipMatches];

    int correct = 0;
    DistanceType distR = 0;
    StartStopTimer t;
    int repeats = 0;
    while (t.value<0.2) {
        repeats++;
        t.start();
        correct = 0;
        distR = 0;
        for (size_t i = 0; i < testData.rows; i++) {
            resultSet.init(&indices[0], &dists[0]);
            index.findNeighbors(resultSet, testData[i], searchParams);

            correct += countCorrectMatches(neighbors,matches[i], nn);
            distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
        }
        t.stop();
    }
    time = float(t.value/repeats);

    float precicion = (float)correct/(nn*testData.rows);

    dist = distR/(testData.rows*nn);

    Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
                 checks, precicion, time, 1000.0 * time / testData.rows, dist);

    return precicion;
}


template <typename Distance>
float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
                        const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
                        int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
{
    typedef typename Distance::ResultType DistanceType;

    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
    Logger::info("---------------------------------------------------------\n");

    float time = 0;
    DistanceType dist = 0;
    precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);

    return time;
}

template <typename Distance>
float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
                           float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
{
    typedef typename Distance::ResultType DistanceType;
    const float SEARCH_EPS = 0.001f;

    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
    Logger::info("---------------------------------------------------------\n");

    int c2 = 1;
    float p2;
    int c1 = 1;
    //float p1;
    float time;
    DistanceType dist;

    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);

    if (p2>precision) {
        Logger::info("Got as close as I can\n");
        checks = c2;
        return time;
    }

    while (p2<precision) {
        c1 = c2;
        //p1 = p2;
        c2 *=2;
        p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
    }

    int cx;
    float realPrecision;
    if (fabs(p2-precision)>SEARCH_EPS) {
        Logger::info("Start linear estimation\n");
        // after we got to values in the vecinity of the desired precision
        // use linear approximation get a better estimation

        cx = (c1+c2)/2;
        realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
        while (fabs(realPrecision-precision)>SEARCH_EPS) {

            if (realPrecision<precision) {
                c1 = cx;
            }
            else {
                c2 = cx;
            }
            cx = (c1+c2)/2;
            if (cx==c1) {
                Logger::info("Got as close as I can\n");
                break;
            }
            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
        }

        c2 = cx;
        p2 = realPrecision;

    }
    else {
        Logger::info("No need for linear estimation\n");
        cx = c2;
        realPrecision = p2;
    }

    checks = cx;
    return time;
}


template <typename Distance>
void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
                           float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
{
    typedef typename Distance::ResultType DistanceType;

    const float SEARCH_EPS = 0.001;

    // make sure precisions array is sorted
    std::sort(precisions, precisions+precisions_length);

    int pindex = 0;
    float precision = precisions[pindex];

    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
    Logger::info("---------------------------------------------------------\n");

    int c2 = 1;
    float p2;

    int c1 = 1;
    float p1;

    float time;
    DistanceType dist;

    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);

    // if precision for 1 run down the tree is already
    // better then some of the requested precisions, then
    // skip those
    while (precisions[pindex]<p2 && pindex<precisions_length) {
        pindex++;
    }

    if (pindex==precisions_length) {
        Logger::info("Got as close as I can\n");
        return;
    }

    for (int i=pindex; i<precisions_length; ++i) {

        precision = precisions[i];
        while (p2<precision) {
            c1 = c2;
            p1 = p2;
            c2 *=2;
            p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
            if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
        }

        int cx;
        float realPrecision;
        if (fabs(p2-precision)>SEARCH_EPS) {
            Logger::info("Start linear estimation\n");
            // after we got to values in the vecinity of the desired precision
            // use linear approximation get a better estimation

            cx = (c1+c2)/2;
            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
            while (fabs(realPrecision-precision)>SEARCH_EPS) {

                if (realPrecision<precision) {
                    c1 = cx;
                }
                else {
                    c2 = cx;
                }
                cx = (c1+c2)/2;
                if (cx==c1) {
                    Logger::info("Got as close as I can\n");
                    break;
                }
                realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
            }

            c2 = cx;
            p2 = realPrecision;

        }
        else {
            Logger::info("No need for linear estimation\n");
            cx = c2;
            realPrecision = p2;
        }

    }
}

}

#endif //OPENCV_FLANN_INDEX_TESTING_H_