1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
/* specfunc/gsl_sf_lambert.h
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#ifndef __GSL_SF_LAMBERT_H__
#define __GSL_SF_LAMBERT_H__
#include <gsl/gsl_sf_result.h>
#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
#else
# define __BEGIN_DECLS /* empty */
# define __END_DECLS /* empty */
#endif
__BEGIN_DECLS
/* Lambert's Function W_0(x)
*
* W_0(x) is the principal branch of the
* implicit function defined by W e^W = x.
*
* -1/E < x < \infty
*
* exceptions: GSL_EMAXITER;
*/
int gsl_sf_lambert_W0_e(double x, gsl_sf_result * result);
double gsl_sf_lambert_W0(double x);
/* Lambert's Function W_{-1}(x)
*
* W_{-1}(x) is the second real branch of the
* implicit function defined by W e^W = x.
* It agrees with W_0(x) when x >= 0.
*
* -1/E < x < \infty
*
* exceptions: GSL_MAXITER;
*/
int gsl_sf_lambert_Wm1_e(double x, gsl_sf_result * result);
double gsl_sf_lambert_Wm1(double x);
__END_DECLS
#endif /* __GSL_SF_LAMBERT_H__ */
|