1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
/* specfunc/gsl_sf_gamma.h
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#ifndef __GSL_SF_GAMMA_H__
#define __GSL_SF_GAMMA_H__
#include <gsl/gsl_sf_result.h>
#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
#else
# define __BEGIN_DECLS /* empty */
# define __END_DECLS /* empty */
#endif
__BEGIN_DECLS
/* Log[Gamma(x)], x not a negative integer
* Uses real Lanczos method.
* Returns the real part of Log[Gamma[x]] when x < 0,
* i.e. Log[|Gamma[x]|].
*
* exceptions: GSL_EDOM, GSL_EROUND
*/
int gsl_sf_lngamma_e(double x, gsl_sf_result * result);
double gsl_sf_lngamma(const double x);
/* Log[Gamma(x)], x not a negative integer
* Uses real Lanczos method. Determines
* the sign of Gamma[x] as well as Log[|Gamma[x]|] for x < 0.
* So Gamma[x] = sgn * Exp[result_lg].
*
* exceptions: GSL_EDOM, GSL_EROUND
*/
int gsl_sf_lngamma_sgn_e(double x, gsl_sf_result * result_lg, double *sgn);
/* Gamma(x), x not a negative integer
* Uses real Lanczos method.
*
* exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EROUND
*/
int gsl_sf_gamma_e(const double x, gsl_sf_result * result);
double gsl_sf_gamma(const double x);
/* Regulated Gamma Function, x > 0
* Gamma^*(x) = Gamma(x)/(Sqrt[2Pi] x^(x-1/2) exp(-x))
* = (1 + 1/(12x) + ...), x->Inf
* A useful suggestion of Temme.
*
* exceptions: GSL_EDOM
*/
int gsl_sf_gammastar_e(const double x, gsl_sf_result * result);
double gsl_sf_gammastar(const double x);
/* 1/Gamma(x)
* Uses real Lanczos method.
*
* exceptions: GSL_EUNDRFLW, GSL_EROUND
*/
int gsl_sf_gammainv_e(const double x, gsl_sf_result * result);
double gsl_sf_gammainv(const double x);
/* Log[Gamma(z)] for z complex, z not a negative integer
* Uses complex Lanczos method. Note that the phase part (arg)
* is not well-determined when |z| is very large, due
* to inevitable roundoff in restricting to (-Pi,Pi].
* This will raise the GSL_ELOSS exception when it occurs.
* The absolute value part (lnr), however, never suffers.
*
* Calculates:
* lnr = log|Gamma(z)|
* arg = arg(Gamma(z)) in (-Pi, Pi]
*
* exceptions: GSL_EDOM, GSL_ELOSS
*/
int gsl_sf_lngamma_complex_e(double zr, double zi, gsl_sf_result * lnr, gsl_sf_result * arg);
/* x^n / n!
*
* x >= 0.0, n >= 0
* exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
*/
int gsl_sf_taylorcoeff_e(const int n, const double x, gsl_sf_result * result);
double gsl_sf_taylorcoeff(const int n, const double x);
/* n!
*
* exceptions: GSL_EDOM, GSL_EOVRFLW
*/
int gsl_sf_fact_e(const unsigned int n, gsl_sf_result * result);
double gsl_sf_fact(const unsigned int n);
/* n!! = n(n-2)(n-4) ...
*
* exceptions: GSL_EDOM, GSL_EOVRFLW
*/
int gsl_sf_doublefact_e(const unsigned int n, gsl_sf_result * result);
double gsl_sf_doublefact(const unsigned int n);
/* log(n!)
* Faster than ln(Gamma(n+1)) for n < 170; defers for larger n.
*
* exceptions: none
*/
int gsl_sf_lnfact_e(const unsigned int n, gsl_sf_result * result);
double gsl_sf_lnfact(const unsigned int n);
/* log(n!!)
*
* exceptions: none
*/
int gsl_sf_lndoublefact_e(const unsigned int n, gsl_sf_result * result);
double gsl_sf_lndoublefact(const unsigned int n);
/* log(n choose m)
*
* exceptions: GSL_EDOM
*/
int gsl_sf_lnchoose_e(unsigned int n, unsigned int m, gsl_sf_result * result);
double gsl_sf_lnchoose(unsigned int n, unsigned int m);
/* n choose m
*
* exceptions: GSL_EDOM, GSL_EOVRFLW
*/
int gsl_sf_choose_e(unsigned int n, unsigned int m, gsl_sf_result * result);
double gsl_sf_choose(unsigned int n, unsigned int m);
/* Logarithm of Pochhammer (Apell) symbol
* log( (a)_x )
* where (a)_x := Gamma[a + x]/Gamma[a]
*
* a > 0, a+x > 0
*
* exceptions: GSL_EDOM
*/
int gsl_sf_lnpoch_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_lnpoch(const double a, const double x);
/* Logarithm of Pochhammer (Apell) symbol, with sign information.
* result = log( |(a)_x| )
* sgn = sgn( (a)_x )
* where (a)_x := Gamma[a + x]/Gamma[a]
*
* a != neg integer, a+x != neg integer
*
* exceptions: GSL_EDOM
*/
int gsl_sf_lnpoch_sgn_e(const double a, const double x, gsl_sf_result * result, double * sgn);
/* Pochhammer (Apell) symbol
* (a)_x := Gamma[a + x]/Gamma[x]
*
* a != neg integer, a+x != neg integer
*
* exceptions: GSL_EDOM, GSL_EOVRFLW
*/
int gsl_sf_poch_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_poch(const double a, const double x);
/* Relative Pochhammer (Apell) symbol
* ((a,x) - 1)/x
* where (a,x) = (a)_x := Gamma[a + x]/Gamma[a]
*
* exceptions: GSL_EDOM
*/
int gsl_sf_pochrel_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_pochrel(const double a, const double x);
/* Normalized Incomplete Gamma Function
*
* Q(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,x,Infinity} ]
*
* a >= 0, x >= 0
* Q(a,0) := 1
* Q(0,x) := 0, x != 0
*
* exceptions: GSL_EDOM
*/
int gsl_sf_gamma_inc_Q_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_gamma_inc_Q(const double a, const double x);
/* Complementary Normalized Incomplete Gamma Function
*
* P(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,0,x} ]
*
* a > 0, x >= 0
*
* exceptions: GSL_EDOM
*/
int gsl_sf_gamma_inc_P_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_gamma_inc_P(const double a, const double x);
/* Non-normalized Incomplete Gamma Function
*
* Gamma(a,x) := Integral[ t^(a-1) e^(-t), {t,x,Infinity} ]
*
* x >= 0.0
* Gamma(a, 0) := Gamma(a)
*
* exceptions: GSL_EDOM
*/
int gsl_sf_gamma_inc_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_gamma_inc(const double a, const double x);
/* Logarithm of Beta Function
* Log[B(a,b)]
*
* a > 0, b > 0
* exceptions: GSL_EDOM
*/
int gsl_sf_lnbeta_e(const double a, const double b, gsl_sf_result * result);
double gsl_sf_lnbeta(const double a, const double b);
int gsl_sf_lnbeta_sgn_e(const double x, const double y, gsl_sf_result * result, double * sgn);
/* Beta Function
* B(a,b)
*
* a > 0, b > 0
* exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
*/
int gsl_sf_beta_e(const double a, const double b, gsl_sf_result * result);
double gsl_sf_beta(const double a, const double b);
/* Normalized Incomplete Beta Function
* B_x(a,b)/B(a,b)
*
* a > 0, b > 0, 0 <= x <= 1
* exceptions: GSL_EDOM, GSL_EUNDRFLW
*/
int gsl_sf_beta_inc_e(const double a, const double b, const double x, gsl_sf_result * result);
double gsl_sf_beta_inc(const double a, const double b, const double x);
/* The maximum x such that gamma(x) is not
* considered an overflow.
*/
#define GSL_SF_GAMMA_XMAX 171.0
/* The maximum n such that gsl_sf_fact(n) does not give an overflow. */
#define GSL_SF_FACT_NMAX 170
/* The maximum n such that gsl_sf_doublefact(n) does not give an overflow. */
#define GSL_SF_DOUBLEFACT_NMAX 297
__END_DECLS
#endif /* __GSL_SF_GAMMA_H__ */
|