summaryrefslogtreecommitdiff
path: root/thirdparty/includes/GSL/gsl/gsl_odeiv.h
blob: d70f150159d065fc0582beb55c1d768b7b9c8567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/* ode-initval/gsl_odeiv.h
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman
 */
#ifndef __GSL_ODEIV_H__
#define __GSL_ODEIV_H__

#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_types.h>

#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
#else
# define __BEGIN_DECLS /* empty */
# define __END_DECLS /* empty */
#endif

__BEGIN_DECLS


/* Description of a system of ODEs.
 *
 * y' = f(t,y) = dydt(t, y)
 *
 * The system is specified by giving the right-hand-side
 * of the equation and possibly a jacobian function.
 *
 * Some methods require the jacobian function, which calculates
 * the matrix dfdy and the vector dfdt. The matrix dfdy conforms
 * to the GSL standard, being a continuous range of floating point
 * values, in row-order.
 *
 * As with GSL function objects, user-supplied parameter
 * data is also present. 
 */

typedef struct  
{
  int (* function) (double t, const double y[], double dydt[], void * params);
  int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);
  size_t dimension;
  void * params;
}
gsl_odeiv_system;

#define GSL_ODEIV_FN_EVAL(S,t,y,f)  (*((S)->function))(t,y,f,(S)->params)
#define GSL_ODEIV_JA_EVAL(S,t,y,dfdy,dfdt)  (*((S)->jacobian))(t,y,dfdy,dfdt,(S)->params)


/* General stepper object.
 *
 * Opaque object for stepping an ODE system from t to t+h.
 * In general the object has some state which facilitates
 * iterating the stepping operation.
 */

typedef struct 
{
  const char * name;
  int can_use_dydt_in;
  int gives_exact_dydt_out;
  void * (*alloc) (size_t dim);
  int  (*apply)  (void * state, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt);
  int  (*reset) (void * state, size_t dim);
  unsigned int  (*order) (void * state);
  void (*free)  (void * state);
}
gsl_odeiv_step_type;

typedef struct {
  const gsl_odeiv_step_type * type;
  size_t dimension;
  void * state;
}
gsl_odeiv_step;


/* Available stepper types.
 *
 * rk2    : embedded 2nd(3rd) Runge-Kutta
 * rk4    : 4th order (classical) Runge-Kutta
 * rkck   : embedded 4th(5th) Runge-Kutta, Cash-Karp
 * rk8pd  : embedded 8th(9th) Runge-Kutta, Prince-Dormand
 * rk2imp : implicit 2nd order Runge-Kutta at Gaussian points
 * rk4imp : implicit 4th order Runge-Kutta at Gaussian points
 * gear1  : M=1 implicit Gear method
 * gear2  : M=2 implicit Gear method
 */

GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk4;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rkf45;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rkck;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk8pd;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2imp;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk4imp;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_bsimp;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_gear1;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_gear2;


/* Constructor for specialized stepper objects.
 */
gsl_odeiv_step * gsl_odeiv_step_alloc(const gsl_odeiv_step_type * T, size_t dim);
int  gsl_odeiv_step_reset(gsl_odeiv_step * s);
void gsl_odeiv_step_free(gsl_odeiv_step * s);

/* General stepper object methods.
 */
const char * gsl_odeiv_step_name(const gsl_odeiv_step * s);
unsigned int gsl_odeiv_step_order(const gsl_odeiv_step * s);

int  gsl_odeiv_step_apply(gsl_odeiv_step * s, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt);

/* General step size control object.
 *
 * The hadjust() method controls the adjustment of
 * step size given the result of a step and the error.
 * Valid hadjust() methods must return one of the codes below.
 *
 * The general data can be used by specializations
 * to store state and control their heuristics.
 */

typedef struct 
{
  const char * name;
  void * (*alloc) (void);
  int  (*init) (void * state, double eps_abs, double eps_rel, double a_y, double a_dydt);
  int  (*hadjust) (void * state, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double * h);
  void (*free) (void * state);
}
gsl_odeiv_control_type;

typedef struct 
{
  const gsl_odeiv_control_type * type;
  void * state;
}
gsl_odeiv_control;

/* Possible return values for an hadjust() evolution method.
 */
#define GSL_ODEIV_HADJ_INC   1  /* step was increased */
#define GSL_ODEIV_HADJ_NIL   0  /* step unchanged     */
#define GSL_ODEIV_HADJ_DEC (-1) /* step decreased     */

gsl_odeiv_control * gsl_odeiv_control_alloc(const gsl_odeiv_control_type * T);
int gsl_odeiv_control_init(gsl_odeiv_control * c, double eps_abs, double eps_rel, double a_y, double a_dydt);
void gsl_odeiv_control_free(gsl_odeiv_control * c);
int gsl_odeiv_control_hadjust (gsl_odeiv_control * c, gsl_odeiv_step * s, const double y[], const double yerr[], const double dydt[], double * h);
const char * gsl_odeiv_control_name(const gsl_odeiv_control * c);

/* Available control object constructors.
 *
 * The standard control object is a four parameter heuristic
 * defined as follows:
 *    D0 = eps_abs + eps_rel * (a_y |y| + a_dydt h |y'|)
 *    D1 = |yerr|
 *    q  = consistency order of method (q=4 for 4(5) embedded RK)
 *    S  = safety factor (0.9 say)
 *
 *                      /  (D0/D1)^(1/(q+1))  D0 >= D1
 *    h_NEW = S h_OLD * |
 *                      \  (D0/D1)^(1/q)      D0 < D1
 *
 * This encompasses all the standard error scaling methods.
 *
 * The y method is the standard method with a_y=1, a_dydt=0.
 * The yp method is the standard method with a_y=0, a_dydt=1.
 */

gsl_odeiv_control * gsl_odeiv_control_standard_new(double eps_abs, double eps_rel, double a_y, double a_dydt);
gsl_odeiv_control * gsl_odeiv_control_y_new(double eps_abs, double eps_rel);
gsl_odeiv_control * gsl_odeiv_control_yp_new(double eps_abs, double eps_rel);

/* This controller computes errors using different absolute errors for
 * each component
 *
 *    D0 = eps_abs * scale_abs[i] + eps_rel * (a_y |y| + a_dydt h |y'|)
 */
gsl_odeiv_control * gsl_odeiv_control_scaled_new(double eps_abs, double eps_rel, double a_y, double a_dydt, const double scale_abs[], size_t dim);

/* General evolution object.
 */
typedef struct {
  size_t dimension;
  double * y0;
  double * yerr;
  double * dydt_in;
  double * dydt_out;
  double last_step;
  unsigned long int count;
  unsigned long int failed_steps;
}
gsl_odeiv_evolve;

/* Evolution object methods.
 */
gsl_odeiv_evolve * gsl_odeiv_evolve_alloc(size_t dim);
int gsl_odeiv_evolve_apply(gsl_odeiv_evolve * e, gsl_odeiv_control * con, gsl_odeiv_step * step, const gsl_odeiv_system * dydt, double * t, double t1, double * h, double y[]);
int gsl_odeiv_evolve_reset(gsl_odeiv_evolve * e);
void gsl_odeiv_evolve_free(gsl_odeiv_evolve * e);


__END_DECLS

#endif /* __GSL_ODEIV_H__ */