summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/ztrsyl.f
blob: d2e0ecc7d158c3bab509775bd9b3094118cb45fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
      SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
     $                   LDC, SCALE, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          TRANA, TRANB
      INTEGER            INFO, ISGN, LDA, LDB, LDC, M, N
      DOUBLE PRECISION   SCALE
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  ZTRSYL solves the complex Sylvester matrix equation:
*
*     op(A)*X + X*op(B) = scale*C or
*     op(A)*X - X*op(B) = scale*C,
*
*  where op(A) = A or A**H, and A and B are both upper triangular. A is
*  M-by-M and B is N-by-N; the right hand side C and the solution X are
*  M-by-N; and scale is an output scale factor, set <= 1 to avoid
*  overflow in X.
*
*  Arguments
*  =========
*
*  TRANA   (input) CHARACTER*1
*          Specifies the option op(A):
*          = 'N': op(A) = A    (No transpose)
*          = 'C': op(A) = A**H (Conjugate transpose)
*
*  TRANB   (input) CHARACTER*1
*          Specifies the option op(B):
*          = 'N': op(B) = B    (No transpose)
*          = 'C': op(B) = B**H (Conjugate transpose)
*
*  ISGN    (input) INTEGER
*          Specifies the sign in the equation:
*          = +1: solve op(A)*X + X*op(B) = scale*C
*          = -1: solve op(A)*X - X*op(B) = scale*C
*
*  M       (input) INTEGER
*          The order of the matrix A, and the number of rows in the
*          matrices X and C. M >= 0.
*
*  N       (input) INTEGER
*          The order of the matrix B, and the number of columns in the
*          matrices X and C. N >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,M)
*          The upper triangular matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  B       (input) COMPLEX*16 array, dimension (LDB,N)
*          The upper triangular matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
*          On entry, the M-by-N right hand side matrix C.
*          On exit, C is overwritten by the solution matrix X.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M)
*
*  SCALE   (output) DOUBLE PRECISION
*          The scale factor, scale, set <= 1 to avoid overflow in X.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          = 1: A and B have common or very close eigenvalues; perturbed
*               values were used to solve the equation (but the matrices
*               A and B are unchanged).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRNA, NOTRNB
      INTEGER            J, K, L
      DOUBLE PRECISION   BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN,
     $                   SMLNUM
      COMPLEX*16         A11, SUML, SUMR, VEC, X11
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   DUM( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANGE
      COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
      EXTERNAL           LSAME, DLAMCH, ZLANGE, ZDOTC, ZDOTU, ZLADIV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLABAD, XERBLA, ZDSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Decode and Test input parameters
*
      NOTRNA = LSAME( TRANA, 'N' )
      NOTRNB = LSAME( TRANB, 'N' )
*
      INFO = 0
      IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'C' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'C' ) ) THEN
         INFO = -2
      ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTRSYL', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Set constants to control overflow
*
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      SMLNUM = SMLNUM*DBLE( M*N ) / EPS
      BIGNUM = ONE / SMLNUM
      SMIN = MAX( SMLNUM, EPS*ZLANGE( 'M', M, M, A, LDA, DUM ),
     $       EPS*ZLANGE( 'M', N, N, B, LDB, DUM ) )
      SCALE = ONE
      SGN = ISGN
*
      IF( NOTRNA .AND. NOTRNB ) THEN
*
*        Solve    A*X + ISGN*X*B = scale*C.
*
*        The (K,L)th block of X is determined starting from
*        bottom-left corner column by column by
*
*            A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
*        Where
*                    M                        L-1
*          R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)].
*                  I=K+1                      J=1
*
         DO 30 L = 1, N
            DO 20 K = M, 1, -1
*
               SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
     $                C( MIN( K+1, M ), L ), 1 )
               SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
               VEC = C( K, L ) - ( SUML+SGN*SUMR )
*
               SCALOC = ONE
               A11 = A( K, K ) + SGN*B( L, L )
               DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
               IF( DA11.LE.SMIN ) THEN
                  A11 = SMIN
                  DA11 = SMIN
                  INFO = 1
               END IF
               DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
               IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
                  IF( DB.GT.BIGNUM*DA11 )
     $               SCALOC = ONE / DB
               END IF
               X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
*
               IF( SCALOC.NE.ONE ) THEN
                  DO 10 J = 1, N
                     CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
   10             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
               C( K, L ) = X11
*
   20       CONTINUE
   30    CONTINUE
*
      ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
*
*        Solve    A' *X + ISGN*X*B = scale*C.
*
*        The (K,L)th block of X is determined starting from
*        upper-left corner column by column by
*
*            A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
*        Where
*                   K-1                         L-1
*          R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]
*                   I=1                         J=1
*
         DO 60 L = 1, N
            DO 50 K = 1, M
*
               SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
               SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
               VEC = C( K, L ) - ( SUML+SGN*SUMR )
*
               SCALOC = ONE
               A11 = DCONJG( A( K, K ) ) + SGN*B( L, L )
               DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
               IF( DA11.LE.SMIN ) THEN
                  A11 = SMIN
                  DA11 = SMIN
                  INFO = 1
               END IF
               DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
               IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
                  IF( DB.GT.BIGNUM*DA11 )
     $               SCALOC = ONE / DB
               END IF
*
               X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
*
               IF( SCALOC.NE.ONE ) THEN
                  DO 40 J = 1, N
                     CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
   40             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
               C( K, L ) = X11
*
   50       CONTINUE
   60    CONTINUE
*
      ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
*
*        Solve    A'*X + ISGN*X*B' = C.
*
*        The (K,L)th block of X is determined starting from
*        upper-right corner column by column by
*
*            A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L)
*
*        Where
*                    K-1
*           R(K,L) = SUM [A'(I,K)*X(I,L)] +
*                    I=1
*                           N
*                     ISGN*SUM [X(K,J)*B'(L,J)].
*                          J=L+1
*
         DO 90 L = N, 1, -1
            DO 80 K = 1, M
*
               SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
               SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
     $                B( L, MIN( L+1, N ) ), LDB )
               VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
*
               SCALOC = ONE
               A11 = DCONJG( A( K, K )+SGN*B( L, L ) )
               DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
               IF( DA11.LE.SMIN ) THEN
                  A11 = SMIN
                  DA11 = SMIN
                  INFO = 1
               END IF
               DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
               IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
                  IF( DB.GT.BIGNUM*DA11 )
     $               SCALOC = ONE / DB
               END IF
*
               X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
*
               IF( SCALOC.NE.ONE ) THEN
                  DO 70 J = 1, N
                     CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
   70             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
               C( K, L ) = X11
*
   80       CONTINUE
   90    CONTINUE
*
      ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
*
*        Solve    A*X + ISGN*X*B' = C.
*
*        The (K,L)th block of X is determined starting from
*        bottom-left corner column by column by
*
*           A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L)
*
*        Where
*                    M                          N
*          R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)]
*                  I=K+1                      J=L+1
*
         DO 120 L = N, 1, -1
            DO 110 K = M, 1, -1
*
               SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
     $                C( MIN( K+1, M ), L ), 1 )
               SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
     $                B( L, MIN( L+1, N ) ), LDB )
               VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
*
               SCALOC = ONE
               A11 = A( K, K ) + SGN*DCONJG( B( L, L ) )
               DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
               IF( DA11.LE.SMIN ) THEN
                  A11 = SMIN
                  DA11 = SMIN
                  INFO = 1
               END IF
               DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
               IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
                  IF( DB.GT.BIGNUM*DA11 )
     $               SCALOC = ONE / DB
               END IF
*
               X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
*
               IF( SCALOC.NE.ONE ) THEN
                  DO 100 J = 1, N
                     CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
  100             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
               C( K, L ) = X11
*
  110       CONTINUE
  120    CONTINUE
*
      END IF
*
      RETURN
*
*     End of ZTRSYL
*
      END