summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/ztrevc.f
blob: 21142f42361435a30863504dff6b25854064a0d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
      SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
     $                   LDVR, MM, M, WORK, RWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, SIDE
      INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZTREVC computes some or all of the right and/or left eigenvectors of
*  a complex upper triangular matrix T.
*  Matrices of this type are produced by the Schur factorization of
*  a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
*  
*  The right eigenvector x and the left eigenvector y of T corresponding
*  to an eigenvalue w are defined by:
*  
*               T*x = w*x,     (y**H)*T = w*(y**H)
*  
*  where y**H denotes the conjugate transpose of the vector y.
*  The eigenvalues are not input to this routine, but are read directly
*  from the diagonal of T.
*  
*  This routine returns the matrices X and/or Y of right and left
*  eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
*  input matrix.  If Q is the unitary factor that reduces a matrix A to
*  Schur form T, then Q*X and Q*Y are the matrices of right and left
*  eigenvectors of A.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'R':  compute right eigenvectors only;
*          = 'L':  compute left eigenvectors only;
*          = 'B':  compute both right and left eigenvectors.
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A':  compute all right and/or left eigenvectors;
*          = 'B':  compute all right and/or left eigenvectors,
*                  backtransformed using the matrices supplied in
*                  VR and/or VL;
*          = 'S':  compute selected right and/or left eigenvectors,
*                  as indicated by the logical array SELECT.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
*          computed.
*          The eigenvector corresponding to the j-th eigenvalue is
*          computed if SELECT(j) = .TRUE..
*          Not referenced if HOWMNY = 'A' or 'B'.
*
*  N       (input) INTEGER
*          The order of the matrix T. N >= 0.
*
*  T       (input/output) COMPLEX*16 array, dimension (LDT,N)
*          The upper triangular matrix T.  T is modified, but restored
*          on exit.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= max(1,N).
*
*  VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)
*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*          contain an N-by-N matrix Q (usually the unitary matrix Q of
*          Schur vectors returned by ZHSEQR).
*          On exit, if SIDE = 'L' or 'B', VL contains:
*          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
*          if HOWMNY = 'B', the matrix Q*Y;
*          if HOWMNY = 'S', the left eigenvectors of T specified by
*                           SELECT, stored consecutively in the columns
*                           of VL, in the same order as their
*                           eigenvalues.
*          Not referenced if SIDE = 'R'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL.  LDVL >= 1, and if
*          SIDE = 'L' or 'B', LDVL >= N.
*
*  VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)
*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*          contain an N-by-N matrix Q (usually the unitary matrix Q of
*          Schur vectors returned by ZHSEQR).
*          On exit, if SIDE = 'R' or 'B', VR contains:
*          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
*          if HOWMNY = 'B', the matrix Q*X;
*          if HOWMNY = 'S', the right eigenvectors of T specified by
*                           SELECT, stored consecutively in the columns
*                           of VR, in the same order as their
*                           eigenvalues.
*          Not referenced if SIDE = 'L'.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= 1, and if
*          SIDE = 'R' or 'B'; LDVR >= N.
*
*  MM      (input) INTEGER
*          The number of columns in the arrays VL and/or VR. MM >= M.
*
*  M       (output) INTEGER
*          The number of columns in the arrays VL and/or VR actually
*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
*          is set to N.  Each selected eigenvector occupies one
*          column.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The algorithm used in this program is basically backward (forward)
*  substitution, with scaling to make the the code robust against
*  possible overflow.
*
*  Each eigenvector is normalized so that the element of largest
*  magnitude has magnitude 1; here the magnitude of a complex number
*  (x,y) is taken to be |x| + |y|.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CMZERO, CMONE
      PARAMETER          ( CMZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CMONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
      INTEGER            I, II, IS, J, K, KI
      DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
      COMPLEX*16         CDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH, DZASUM
      EXTERNAL           LSAME, IZAMAX, DLAMCH, DZASUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      BOTHV = LSAME( SIDE, 'B' )
      RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
      LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
*
      ALLV = LSAME( HOWMNY, 'A' )
      OVER = LSAME( HOWMNY, 'B' )
      SOMEV = LSAME( HOWMNY, 'S' )
*
*     Set M to the number of columns required to store the selected
*     eigenvectors.
*
      IF( SOMEV ) THEN
         M = 0
         DO 10 J = 1, N
            IF( SELECT( J ) )
     $         M = M + 1
   10    CONTINUE
      ELSE
         M = N
      END IF
*
      INFO = 0
      IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
         INFO = -1
      ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
         INFO = -10
      ELSE IF( MM.LT.M ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTREVC', -INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Set the constants to control overflow.
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( N / ULP )
*
*     Store the diagonal elements of T in working array WORK.
*
      DO 20 I = 1, N
         WORK( I+N ) = T( I, I )
   20 CONTINUE
*
*     Compute 1-norm of each column of strictly upper triangular
*     part of T to control overflow in triangular solver.
*
      RWORK( 1 ) = ZERO
      DO 30 J = 2, N
         RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
   30 CONTINUE
*
      IF( RIGHTV ) THEN
*
*        Compute right eigenvectors.
*
         IS = M
         DO 80 KI = N, 1, -1
*
            IF( SOMEV ) THEN
               IF( .NOT.SELECT( KI ) )
     $            GO TO 80
            END IF
            SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
*
            WORK( 1 ) = CMONE
*
*           Form right-hand side.
*
            DO 40 K = 1, KI - 1
               WORK( K ) = -T( K, KI )
   40       CONTINUE
*
*           Solve the triangular system:
*              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
*
            DO 50 K = 1, KI - 1
               T( K, K ) = T( K, K ) - T( KI, KI )
               IF( CABS1( T( K, K ) ).LT.SMIN )
     $            T( K, K ) = SMIN
   50       CONTINUE
*
            IF( KI.GT.1 ) THEN
               CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
     $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
     $                      INFO )
               WORK( KI ) = SCALE
            END IF
*
*           Copy the vector x or Q*x to VR and normalize.
*
            IF( .NOT.OVER ) THEN
               CALL ZCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
*
               II = IZAMAX( KI, VR( 1, IS ), 1 )
               REMAX = ONE / CABS1( VR( II, IS ) )
               CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
*
               DO 60 K = KI + 1, N
                  VR( K, IS ) = CMZERO
   60          CONTINUE
            ELSE
               IF( KI.GT.1 )
     $            CALL ZGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
     $                        1, DCMPLX( SCALE ), VR( 1, KI ), 1 )
*
               II = IZAMAX( N, VR( 1, KI ), 1 )
               REMAX = ONE / CABS1( VR( II, KI ) )
               CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
            END IF
*
*           Set back the original diagonal elements of T.
*
            DO 70 K = 1, KI - 1
               T( K, K ) = WORK( K+N )
   70       CONTINUE
*
            IS = IS - 1
   80    CONTINUE
      END IF
*
      IF( LEFTV ) THEN
*
*        Compute left eigenvectors.
*
         IS = 1
         DO 130 KI = 1, N
*
            IF( SOMEV ) THEN
               IF( .NOT.SELECT( KI ) )
     $            GO TO 130
            END IF
            SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
*
            WORK( N ) = CMONE
*
*           Form right-hand side.
*
            DO 90 K = KI + 1, N
               WORK( K ) = -DCONJG( T( KI, K ) )
   90       CONTINUE
*
*           Solve the triangular system:
*              (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK.
*
            DO 100 K = KI + 1, N
               T( K, K ) = T( K, K ) - T( KI, KI )
               IF( CABS1( T( K, K ) ).LT.SMIN )
     $            T( K, K ) = SMIN
  100       CONTINUE
*
            IF( KI.LT.N ) THEN
               CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
     $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
     $                      WORK( KI+1 ), SCALE, RWORK, INFO )
               WORK( KI ) = SCALE
            END IF
*
*           Copy the vector x or Q*x to VL and normalize.
*
            IF( .NOT.OVER ) THEN
               CALL ZCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
*
               II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
               REMAX = ONE / CABS1( VL( II, IS ) )
               CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
*
               DO 110 K = 1, KI - 1
                  VL( K, IS ) = CMZERO
  110          CONTINUE
            ELSE
               IF( KI.LT.N )
     $            CALL ZGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
     $                        WORK( KI+1 ), 1, DCMPLX( SCALE ),
     $                        VL( 1, KI ), 1 )
*
               II = IZAMAX( N, VL( 1, KI ), 1 )
               REMAX = ONE / CABS1( VL( II, KI ) )
               CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
            END IF
*
*           Set back the original diagonal elements of T.
*
            DO 120 K = KI + 1, N
               T( K, K ) = WORK( K+N )
  120       CONTINUE
*
            IS = IS + 1
  130    CONTINUE
      END IF
*
      RETURN
*
*     End of ZTREVC
*
      END