summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/ztgex2.f
blob: a0c42aad1905f3d0e1ddc9e1b6b9af0e25b2bd71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
      SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
     $                   LDZ, J1, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      LOGICAL            WANTQ, WANTZ
      INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
*  in an upper triangular matrix pair (A, B) by an unitary equivalence
*  transformation.
*
*  (A, B) must be in generalized Schur canonical form, that is, A and
*  B are both upper triangular.
*
*  Optionally, the matrices Q and Z of generalized Schur vectors are
*  updated.
*
*         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
*         Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
*
*
*  Arguments
*  =========
*
*  WANTQ   (input) LOGICAL
*          .TRUE. : update the left transformation matrix Q;
*          .FALSE.: do not update Q.
*
*  WANTZ   (input) LOGICAL
*          .TRUE. : update the right transformation matrix Z;
*          .FALSE.: do not update Z.
*
*  N       (input) INTEGER
*          The order of the matrices A and B. N >= 0.
*
*  A       (input/output) COMPLEX*16 arrays, dimensions (LDA,N)
*          On entry, the matrix A in the pair (A, B).
*          On exit, the updated matrix A.
*
*  LDA     (input)  INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  B       (input/output) COMPLEX*16 arrays, dimensions (LDB,N)
*          On entry, the matrix B in the pair (A, B).
*          On exit, the updated matrix B.
*
*  LDB     (input)  INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  Q       (input/output) COMPLEX*16 array, dimension (LDZ,N)
*          If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
*          the updated matrix Q.
*          Not referenced if WANTQ = .FALSE..
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q. LDQ >= 1;
*          If WANTQ = .TRUE., LDQ >= N.
*
*  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
*          If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
*          the updated matrix Z.
*          Not referenced if WANTZ = .FALSE..
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z. LDZ >= 1;
*          If WANTZ = .TRUE., LDZ >= N.
*
*  J1      (input) INTEGER
*          The index to the first block (A11, B11).
*
*  INFO    (output) INTEGER
*           =0:  Successful exit.
*           =1:  The transformed matrix pair (A, B) would be too far
*                from generalized Schur form; the problem is ill-
*                conditioned. 
*
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  In the current code both weak and strong stability tests are
*  performed. The user can omit the strong stability test by changing
*  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
*  details.
*
*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
*
*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
*      Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
*      Department of Computing Science, Umea University, S-901 87 Umea,
*      Sweden, 1994. Also as LAPACK Working Note 87. To appear in
*      Numerical Algorithms, 1996.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
      DOUBLE PRECISION   TEN
      PARAMETER          ( TEN = 10.0D+0 )
      INTEGER            LDST
      PARAMETER          ( LDST = 2 )
      LOGICAL            WANDS
      PARAMETER          ( WANDS = .TRUE. )
*     ..
*     .. Local Scalars ..
      LOGICAL            DTRONG, WEAK
      INTEGER            I, M
      DOUBLE PRECISION   CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SS, SUM,
     $                   THRESH, WS
      COMPLEX*16         CDUM, F, G, SQ, SZ
*     ..
*     .. Local Arrays ..
      COMPLEX*16         S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLACPY, ZLARTG, ZLASSQ, ZROT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCONJG, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.LE.1 )
     $   RETURN
*
      M = LDST
      WEAK = .FALSE.
      DTRONG = .FALSE.
*
*     Make a local copy of selected block in (A, B)
*
      CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
      CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
*
*     Compute the threshold for testing the acceptance of swapping.
*
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' ) / EPS
      SCALE = DBLE( CZERO )
      SUM = DBLE( CONE )
      CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
      CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
      CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
      SA = SCALE*SQRT( SUM )
      THRESH = MAX( TEN*EPS*SA, SMLNUM )
*
*     Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
*     using Givens rotations and perform the swap tentatively.
*
      F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
      G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
      SA = ABS( S( 2, 2 ) )
      SB = ABS( T( 2, 2 ) )
      CALL ZLARTG( G, F, CZ, SZ, CDUM )
      SZ = -SZ
      CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) )
      CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) )
      IF( SA.GE.SB ) THEN
         CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
      ELSE
         CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
      END IF
      CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
      CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
*
*     Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T)))
*
      WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
      WEAK = WS.LE.THRESH
      IF( .NOT.WEAK )
     $   GO TO 20
*
      IF( WANDS ) THEN
*
*        Strong stability test:
*           F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B)))
*
         CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
         CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
         CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) )
         CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) )
         CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
         CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
         DO 10 I = 1, 2
            WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
            WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
            WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
            WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
   10    CONTINUE
         SCALE = DBLE( CZERO )
         SUM = DBLE( CONE )
         CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
         SS = SCALE*SQRT( SUM )
         DTRONG = SS.LE.THRESH
         IF( .NOT.DTRONG )
     $      GO TO 20
      END IF
*
*     If the swap is accepted ("weakly" and "strongly"), apply the
*     equivalence transformations to the original matrix pair (A,B)
*
      CALL ZROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ,
     $           DCONJG( SZ ) )
      CALL ZROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ,
     $           DCONJG( SZ ) )
      CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
      CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
*
*     Set  N1 by N2 (2,1) blocks to 0
*
      A( J1+1, J1 ) = CZERO
      B( J1+1, J1 ) = CZERO
*
*     Accumulate transformations into Q and Z if requested.
*
      IF( WANTZ )
     $   CALL ZROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ,
     $              DCONJG( SZ ) )
      IF( WANTQ )
     $   CALL ZROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ,
     $              DCONJG( SQ ) )
*
*     Exit with INFO = 0 if swap was successfully performed.
*
      RETURN
*
*     Exit with INFO = 1 if swap was rejected.
*
   20 CONTINUE
      INFO = 1
      RETURN
*
*     End of ZTGEX2
*
      END