summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/ztgevc.f
blob: b8da962d4def5b449709524bf8c097934f339708 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
      SUBROUTINE ZTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
     $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, SIDE
      INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
     $                   VR( LDVR, * ), WORK( * )
*     ..
*
*
*  Purpose
*  =======
*
*  ZTGEVC computes some or all of the right and/or left eigenvectors of
*  a pair of complex matrices (S,P), where S and P are upper triangular.
*  Matrix pairs of this type are produced by the generalized Schur
*  factorization of a complex matrix pair (A,B):
*  
*     A = Q*S*Z**H,  B = Q*P*Z**H
*  
*  as computed by ZGGHRD + ZHGEQZ.
*  
*  The right eigenvector x and the left eigenvector y of (S,P)
*  corresponding to an eigenvalue w are defined by:
*  
*     S*x = w*P*x,  (y**H)*S = w*(y**H)*P,
*  
*  where y**H denotes the conjugate tranpose of y.
*  The eigenvalues are not input to this routine, but are computed
*  directly from the diagonal elements of S and P.
*  
*  This routine returns the matrices X and/or Y of right and left
*  eigenvectors of (S,P), or the products Z*X and/or Q*Y,
*  where Z and Q are input matrices.
*  If Q and Z are the unitary factors from the generalized Schur
*  factorization of a matrix pair (A,B), then Z*X and Q*Y
*  are the matrices of right and left eigenvectors of (A,B).
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'R': compute right eigenvectors only;
*          = 'L': compute left eigenvectors only;
*          = 'B': compute both right and left eigenvectors.
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A': compute all right and/or left eigenvectors;
*          = 'B': compute all right and/or left eigenvectors,
*                 backtransformed by the matrices in VR and/or VL;
*          = 'S': compute selected right and/or left eigenvectors,
*                 specified by the logical array SELECT.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          If HOWMNY='S', SELECT specifies the eigenvectors to be
*          computed.  The eigenvector corresponding to the j-th
*          eigenvalue is computed if SELECT(j) = .TRUE..
*          Not referenced if HOWMNY = 'A' or 'B'.
*
*  N       (input) INTEGER
*          The order of the matrices S and P.  N >= 0.
*
*  S       (input) COMPLEX*16 array, dimension (LDS,N)
*          The upper triangular matrix S from a generalized Schur
*          factorization, as computed by ZHGEQZ.
*
*  LDS     (input) INTEGER
*          The leading dimension of array S.  LDS >= max(1,N).
*
*  P       (input) COMPLEX*16 array, dimension (LDP,N)
*          The upper triangular matrix P from a generalized Schur
*          factorization, as computed by ZHGEQZ.  P must have real
*          diagonal elements.
*
*  LDP     (input) INTEGER
*          The leading dimension of array P.  LDP >= max(1,N).
*
*  VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)
*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*          contain an N-by-N matrix Q (usually the unitary matrix Q
*          of left Schur vectors returned by ZHGEQZ).
*          On exit, if SIDE = 'L' or 'B', VL contains:
*          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
*          if HOWMNY = 'B', the matrix Q*Y;
*          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
*                      SELECT, stored consecutively in the columns of
*                      VL, in the same order as their eigenvalues.
*          Not referenced if SIDE = 'R'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of array VL.  LDVL >= 1, and if
*          SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N.
*
*  VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)
*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*          contain an N-by-N matrix Q (usually the unitary matrix Z
*          of right Schur vectors returned by ZHGEQZ).
*          On exit, if SIDE = 'R' or 'B', VR contains:
*          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
*          if HOWMNY = 'B', the matrix Z*X;
*          if HOWMNY = 'S', the right eigenvectors of (S,P) specified by
*                      SELECT, stored consecutively in the columns of
*                      VR, in the same order as their eigenvalues.
*          Not referenced if SIDE = 'L'.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= 1, and if
*          SIDE = 'R' or 'B', LDVR >= N.
*
*  MM      (input) INTEGER
*          The number of columns in the arrays VL and/or VR. MM >= M.
*
*  M       (output) INTEGER
*          The number of columns in the arrays VL and/or VR actually
*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
*          is set to N.  Each selected eigenvector occupies one column.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            COMPL, COMPR, ILALL, ILBACK, ILBBAD, ILCOMP,
     $                   LSA, LSB
      INTEGER            I, IBEG, IEIG, IEND, IHWMNY, IM, ISIDE, ISRC,
     $                   J, JE, JR
      DOUBLE PRECISION   ACOEFA, ACOEFF, ANORM, ASCALE, BCOEFA, BIG,
     $                   BIGNUM, BNORM, BSCALE, DMIN, SAFMIN, SBETA,
     $                   SCALE, SMALL, TEMP, ULP, XMAX
      COMPLEX*16         BCOEFF, CA, CB, D, SALPHA, SUM, SUMA, SUMB, X
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      COMPLEX*16         ZLADIV
      EXTERNAL           LSAME, DLAMCH, ZLADIV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLABAD, XERBLA, ZGEMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   ABS1
*     ..
*     .. Statement Function definitions ..
      ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
*     ..
*     .. Executable Statements ..
*
*     Decode and Test the input parameters
*
      IF( LSAME( HOWMNY, 'A' ) ) THEN
         IHWMNY = 1
         ILALL = .TRUE.
         ILBACK = .FALSE.
      ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
         IHWMNY = 2
         ILALL = .FALSE.
         ILBACK = .FALSE.
      ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN
         IHWMNY = 3
         ILALL = .TRUE.
         ILBACK = .TRUE.
      ELSE
         IHWMNY = -1
      END IF
*
      IF( LSAME( SIDE, 'R' ) ) THEN
         ISIDE = 1
         COMPL = .FALSE.
         COMPR = .TRUE.
      ELSE IF( LSAME( SIDE, 'L' ) ) THEN
         ISIDE = 2
         COMPL = .TRUE.
         COMPR = .FALSE.
      ELSE IF( LSAME( SIDE, 'B' ) ) THEN
         ISIDE = 3
         COMPL = .TRUE.
         COMPR = .TRUE.
      ELSE
         ISIDE = -1
      END IF
*
      INFO = 0
      IF( ISIDE.LT.0 ) THEN
         INFO = -1
      ELSE IF( IHWMNY.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDP.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTGEVC', -INFO )
         RETURN
      END IF
*
*     Count the number of eigenvectors
*
      IF( .NOT.ILALL ) THEN
         IM = 0
         DO 10 J = 1, N
            IF( SELECT( J ) )
     $         IM = IM + 1
   10    CONTINUE
      ELSE
         IM = N
      END IF
*
*     Check diagonal of B
*
      ILBBAD = .FALSE.
      DO 20 J = 1, N
         IF( DIMAG( P( J, J ) ).NE.ZERO )
     $      ILBBAD = .TRUE.
   20 CONTINUE
*
      IF( ILBBAD ) THEN
         INFO = -7
      ELSE IF( COMPL .AND. LDVL.LT.N .OR. LDVL.LT.1 ) THEN
         INFO = -10
      ELSE IF( COMPR .AND. LDVR.LT.N .OR. LDVR.LT.1 ) THEN
         INFO = -12
      ELSE IF( MM.LT.IM ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTGEVC', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      M = IM
      IF( N.EQ.0 )
     $   RETURN
*
*     Machine Constants
*
      SAFMIN = DLAMCH( 'Safe minimum' )
      BIG = ONE / SAFMIN
      CALL DLABAD( SAFMIN, BIG )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
      SMALL = SAFMIN*N / ULP
      BIG = ONE / SMALL
      BIGNUM = ONE / ( SAFMIN*N )
*
*     Compute the 1-norm of each column of the strictly upper triangular
*     part of A and B to check for possible overflow in the triangular
*     solver.
*
      ANORM = ABS1( S( 1, 1 ) )
      BNORM = ABS1( P( 1, 1 ) )
      RWORK( 1 ) = ZERO
      RWORK( N+1 ) = ZERO
      DO 40 J = 2, N
         RWORK( J ) = ZERO
         RWORK( N+J ) = ZERO
         DO 30 I = 1, J - 1
            RWORK( J ) = RWORK( J ) + ABS1( S( I, J ) )
            RWORK( N+J ) = RWORK( N+J ) + ABS1( P( I, J ) )
   30    CONTINUE
         ANORM = MAX( ANORM, RWORK( J )+ABS1( S( J, J ) ) )
         BNORM = MAX( BNORM, RWORK( N+J )+ABS1( P( J, J ) ) )
   40 CONTINUE
*
      ASCALE = ONE / MAX( ANORM, SAFMIN )
      BSCALE = ONE / MAX( BNORM, SAFMIN )
*
*     Left eigenvectors
*
      IF( COMPL ) THEN
         IEIG = 0
*
*        Main loop over eigenvalues
*
         DO 140 JE = 1, N
            IF( ILALL ) THEN
               ILCOMP = .TRUE.
            ELSE
               ILCOMP = SELECT( JE )
            END IF
            IF( ILCOMP ) THEN
               IEIG = IEIG + 1
*
               IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
     $             ABS( DBLE( P( JE, JE ) ) ).LE.SAFMIN ) THEN
*
*                 Singular matrix pencil -- return unit eigenvector
*
                  DO 50 JR = 1, N
                     VL( JR, IEIG ) = CZERO
   50             CONTINUE
                  VL( IEIG, IEIG ) = CONE
                  GO TO 140
               END IF
*
*              Non-singular eigenvalue:
*              Compute coefficients  a  and  b  in
*                   H
*                 y  ( a A - b B ) = 0
*
               TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
     $                ABS( DBLE( P( JE, JE ) ) )*BSCALE, SAFMIN )
               SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
               SBETA = ( TEMP*DBLE( P( JE, JE ) ) )*BSCALE
               ACOEFF = SBETA*ASCALE
               BCOEFF = SALPHA*BSCALE
*
*              Scale to avoid underflow
*
               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
               LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
     $               SMALL
*
               SCALE = ONE
               IF( LSA )
     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
               IF( LSB )
     $            SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
     $                    MIN( BNORM, BIG ) )
               IF( LSA .OR. LSB ) THEN
                  SCALE = MIN( SCALE, ONE /
     $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
     $                    ABS1( BCOEFF ) ) ) )
                  IF( LSA ) THEN
                     ACOEFF = ASCALE*( SCALE*SBETA )
                  ELSE
                     ACOEFF = SCALE*ACOEFF
                  END IF
                  IF( LSB ) THEN
                     BCOEFF = BSCALE*( SCALE*SALPHA )
                  ELSE
                     BCOEFF = SCALE*BCOEFF
                  END IF
               END IF
*
               ACOEFA = ABS( ACOEFF )
               BCOEFA = ABS1( BCOEFF )
               XMAX = ONE
               DO 60 JR = 1, N
                  WORK( JR ) = CZERO
   60          CONTINUE
               WORK( JE ) = CONE
               DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
*
*                                              H
*              Triangular solve of  (a A - b B)  y = 0
*
*                                      H
*              (rowwise in  (a A - b B) , or columnwise in a A - b B)
*
               DO 100 J = JE + 1, N
*
*                 Compute
*                       j-1
*                 SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k)
*                       k=je
*                 (Scale if necessary)
*
                  TEMP = ONE / XMAX
                  IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GT.BIGNUM*
     $                TEMP ) THEN
                     DO 70 JR = JE, J - 1
                        WORK( JR ) = TEMP*WORK( JR )
   70                CONTINUE
                     XMAX = ONE
                  END IF
                  SUMA = CZERO
                  SUMB = CZERO
*
                  DO 80 JR = JE, J - 1
                     SUMA = SUMA + DCONJG( S( JR, J ) )*WORK( JR )
                     SUMB = SUMB + DCONJG( P( JR, J ) )*WORK( JR )
   80             CONTINUE
                  SUM = ACOEFF*SUMA - DCONJG( BCOEFF )*SUMB
*
*                 Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) )
*
*                 with scaling and perturbation of the denominator
*
                  D = DCONJG( ACOEFF*S( J, J )-BCOEFF*P( J, J ) )
                  IF( ABS1( D ).LE.DMIN )
     $               D = DCMPLX( DMIN )
*
                  IF( ABS1( D ).LT.ONE ) THEN
                     IF( ABS1( SUM ).GE.BIGNUM*ABS1( D ) ) THEN
                        TEMP = ONE / ABS1( SUM )
                        DO 90 JR = JE, J - 1
                           WORK( JR ) = TEMP*WORK( JR )
   90                   CONTINUE
                        XMAX = TEMP*XMAX
                        SUM = TEMP*SUM
                     END IF
                  END IF
                  WORK( J ) = ZLADIV( -SUM, D )
                  XMAX = MAX( XMAX, ABS1( WORK( J ) ) )
  100          CONTINUE
*
*              Back transform eigenvector if HOWMNY='B'.
*
               IF( ILBACK ) THEN
                  CALL ZGEMV( 'N', N, N+1-JE, CONE, VL( 1, JE ), LDVL,
     $                        WORK( JE ), 1, CZERO, WORK( N+1 ), 1 )
                  ISRC = 2
                  IBEG = 1
               ELSE
                  ISRC = 1
                  IBEG = JE
               END IF
*
*              Copy and scale eigenvector into column of VL
*
               XMAX = ZERO
               DO 110 JR = IBEG, N
                  XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
  110          CONTINUE
*
               IF( XMAX.GT.SAFMIN ) THEN
                  TEMP = ONE / XMAX
                  DO 120 JR = IBEG, N
                     VL( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
  120             CONTINUE
               ELSE
                  IBEG = N + 1
               END IF
*
               DO 130 JR = 1, IBEG - 1
                  VL( JR, IEIG ) = CZERO
  130          CONTINUE
*
            END IF
  140    CONTINUE
      END IF
*
*     Right eigenvectors
*
      IF( COMPR ) THEN
         IEIG = IM + 1
*
*        Main loop over eigenvalues
*
         DO 250 JE = N, 1, -1
            IF( ILALL ) THEN
               ILCOMP = .TRUE.
            ELSE
               ILCOMP = SELECT( JE )
            END IF
            IF( ILCOMP ) THEN
               IEIG = IEIG - 1
*
               IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
     $             ABS( DBLE( P( JE, JE ) ) ).LE.SAFMIN ) THEN
*
*                 Singular matrix pencil -- return unit eigenvector
*
                  DO 150 JR = 1, N
                     VR( JR, IEIG ) = CZERO
  150             CONTINUE
                  VR( IEIG, IEIG ) = CONE
                  GO TO 250
               END IF
*
*              Non-singular eigenvalue:
*              Compute coefficients  a  and  b  in
*
*              ( a A - b B ) x  = 0
*
               TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
     $                ABS( DBLE( P( JE, JE ) ) )*BSCALE, SAFMIN )
               SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
               SBETA = ( TEMP*DBLE( P( JE, JE ) ) )*BSCALE
               ACOEFF = SBETA*ASCALE
               BCOEFF = SALPHA*BSCALE
*
*              Scale to avoid underflow
*
               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
               LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
     $               SMALL
*
               SCALE = ONE
               IF( LSA )
     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
               IF( LSB )
     $            SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
     $                    MIN( BNORM, BIG ) )
               IF( LSA .OR. LSB ) THEN
                  SCALE = MIN( SCALE, ONE /
     $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
     $                    ABS1( BCOEFF ) ) ) )
                  IF( LSA ) THEN
                     ACOEFF = ASCALE*( SCALE*SBETA )
                  ELSE
                     ACOEFF = SCALE*ACOEFF
                  END IF
                  IF( LSB ) THEN
                     BCOEFF = BSCALE*( SCALE*SALPHA )
                  ELSE
                     BCOEFF = SCALE*BCOEFF
                  END IF
               END IF
*
               ACOEFA = ABS( ACOEFF )
               BCOEFA = ABS1( BCOEFF )
               XMAX = ONE
               DO 160 JR = 1, N
                  WORK( JR ) = CZERO
  160          CONTINUE
               WORK( JE ) = CONE
               DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
*
*              Triangular solve of  (a A - b B) x = 0  (columnwise)
*
*              WORK(1:j-1) contains sums w,
*              WORK(j+1:JE) contains x
*
               DO 170 JR = 1, JE - 1
                  WORK( JR ) = ACOEFF*S( JR, JE ) - BCOEFF*P( JR, JE )
  170          CONTINUE
               WORK( JE ) = CONE
*
               DO 210 J = JE - 1, 1, -1
*
*                 Form x(j) := - w(j) / d
*                 with scaling and perturbation of the denominator
*
                  D = ACOEFF*S( J, J ) - BCOEFF*P( J, J )
                  IF( ABS1( D ).LE.DMIN )
     $               D = DCMPLX( DMIN )
*
                  IF( ABS1( D ).LT.ONE ) THEN
                     IF( ABS1( WORK( J ) ).GE.BIGNUM*ABS1( D ) ) THEN
                        TEMP = ONE / ABS1( WORK( J ) )
                        DO 180 JR = 1, JE
                           WORK( JR ) = TEMP*WORK( JR )
  180                   CONTINUE
                     END IF
                  END IF
*
                  WORK( J ) = ZLADIV( -WORK( J ), D )
*
                  IF( J.GT.1 ) THEN
*
*                    w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling
*
                     IF( ABS1( WORK( J ) ).GT.ONE ) THEN
                        TEMP = ONE / ABS1( WORK( J ) )
                        IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GE.
     $                      BIGNUM*TEMP ) THEN
                           DO 190 JR = 1, JE
                              WORK( JR ) = TEMP*WORK( JR )
  190                      CONTINUE
                        END IF
                     END IF
*
                     CA = ACOEFF*WORK( J )
                     CB = BCOEFF*WORK( J )
                     DO 200 JR = 1, J - 1
                        WORK( JR ) = WORK( JR ) + CA*S( JR, J ) -
     $                               CB*P( JR, J )
  200                CONTINUE
                  END IF
  210          CONTINUE
*
*              Back transform eigenvector if HOWMNY='B'.
*
               IF( ILBACK ) THEN
                  CALL ZGEMV( 'N', N, JE, CONE, VR, LDVR, WORK, 1,
     $                        CZERO, WORK( N+1 ), 1 )
                  ISRC = 2
                  IEND = N
               ELSE
                  ISRC = 1
                  IEND = JE
               END IF
*
*              Copy and scale eigenvector into column of VR
*
               XMAX = ZERO
               DO 220 JR = 1, IEND
                  XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
  220          CONTINUE
*
               IF( XMAX.GT.SAFMIN ) THEN
                  TEMP = ONE / XMAX
                  DO 230 JR = 1, IEND
                     VR( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
  230             CONTINUE
               ELSE
                  IEND = 0
               END IF
*
               DO 240 JR = IEND + 1, N
                  VR( JR, IEIG ) = CZERO
  240          CONTINUE
*
            END IF
  250    CONTINUE
      END IF
*
      RETURN
*
*     End of ZTGEVC
*
      END