summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zlatrz.f
blob: c1c7aab325ff36e84ca24f3dc251dfe087e6f240 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
      SUBROUTINE ZLATRZ( M, N, L, A, LDA, TAU, WORK )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            L, LDA, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
*  [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z by means
*  of unitary transformations, where  Z is an (M+L)-by-(M+L) unitary
*  matrix and, R and A1 are M-by-M upper triangular matrices.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  L       (input) INTEGER
*          The number of columns of the matrix A containing the
*          meaningful part of the Householder vectors. N-M >= L >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the leading M-by-N upper trapezoidal part of the
*          array A must contain the matrix to be factorized.
*          On exit, the leading M-by-M upper triangular part of A
*          contains the upper triangular matrix R, and elements N-L+1 to
*          N of the first M rows of A, with the array TAU, represent the
*          unitary matrix Z as a product of M elementary reflectors.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  TAU     (output) COMPLEX*16 array, dimension (M)
*          The scalar factors of the elementary reflectors.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (M)
*
*  Further Details
*  ===============
*
*  Based on contributions by
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*  The factorization is obtained by Householder's method.  The kth
*  transformation matrix, Z( k ), which is used to introduce zeros into
*  the ( m - k + 1 )th row of A, is given in the form
*
*     Z( k ) = ( I     0   ),
*              ( 0  T( k ) )
*
*  where
*
*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
*                                                 (   0    )
*                                                 ( z( k ) )
*
*  tau is a scalar and z( k ) is an l element vector. tau and z( k )
*  are chosen to annihilate the elements of the kth row of A2.
*
*  The scalar tau is returned in the kth element of TAU and the vector
*  u( k ) in the kth row of A2, such that the elements of z( k ) are
*  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
*  the upper triangular part of A1.
*
*  Z is given by
*
*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      COMPLEX*16         ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLACGV, ZLARFG, ZLARZ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.EQ.0 ) THEN
         RETURN
      ELSE IF( M.EQ.N ) THEN
         DO 10 I = 1, N
            TAU( I ) = ZERO
   10    CONTINUE
         RETURN
      END IF
*
      DO 20 I = M, 1, -1
*
*        Generate elementary reflector H(i) to annihilate
*        [ A(i,i) A(i,n-l+1:n) ]
*
         CALL ZLACGV( L, A( I, N-L+1 ), LDA )
         ALPHA = DCONJG( A( I, I ) )
         CALL ZLARFG( L+1, ALPHA, A( I, N-L+1 ), LDA, TAU( I ) )
         TAU( I ) = DCONJG( TAU( I ) )
*
*        Apply H(i) to A(1:i-1,i:n) from the right
*
         CALL ZLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
     $               DCONJG( TAU( I ) ), A( 1, I ), LDA, WORK )
         A( I, I ) = DCONJG( ALPHA )
*
   20 CONTINUE
*
      RETURN
*
*     End of ZLATRZ
*
      END