summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zlarzb.f
blob: 05d2a0e3f496134048ed0383da356674ccb58c46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
      SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
     $                   LDV, T, LDT, C, LDC, WORK, LDWORK )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
      INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         C( LDC, * ), T( LDT, * ), V( LDV, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  ZLARZB applies a complex block reflector H or its transpose H**H
*  to a complex distributed M-by-N  C from the left or the right.
*
*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply H or H' from the Left
*          = 'R': apply H or H' from the Right
*
*  TRANS   (input) CHARACTER*1
*          = 'N': apply H (No transpose)
*          = 'C': apply H' (Conjugate transpose)
*
*  DIRECT  (input) CHARACTER*1
*          Indicates how H is formed from a product of elementary
*          reflectors
*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Indicates how the vectors which define the elementary
*          reflectors are stored:
*          = 'C': Columnwise                        (not supported yet)
*          = 'R': Rowwise
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  K       (input) INTEGER
*          The order of the matrix T (= the number of elementary
*          reflectors whose product defines the block reflector).
*
*  L       (input) INTEGER
*          The number of columns of the matrix V containing the
*          meaningful part of the Householder reflectors.
*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*
*  V       (input) COMPLEX*16 array, dimension (LDV,NV).
*          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
*
*  T       (input) COMPLEX*16 array, dimension (LDT,K)
*          The triangular K-by-K matrix T in the representation of the
*          block reflector.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
*          On entry, the M-by-N matrix C.
*          On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,K)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.
*          If SIDE = 'L', LDWORK >= max(1,N);
*          if SIDE = 'R', LDWORK >= max(1,M).
*
*  Further Details
*  ===============
*
*  Based on contributions by
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANST
      INTEGER            I, INFO, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZCOPY, ZGEMM, ZLACGV, ZTRMM
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
*     Check for currently supported options
*
      INFO = 0
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLARZB', -INFO )
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         TRANST = 'C'
      ELSE
         TRANST = 'N'
      END IF
*
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        Form  H * C  or  H' * C
*
*        W( 1:n, 1:k ) = conjg( C( 1:k, 1:n )' )
*
         DO 10 J = 1, K
            CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
   10    CONTINUE
*
*        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
*                        conjg( C( m-l+1:m, 1:n )' ) * V( 1:k, 1:l )'
*
         IF( L.GT.0 )
     $      CALL ZGEMM( 'Transpose', 'Conjugate transpose', N, K, L,
     $                  ONE, C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK,
     $                  LDWORK )
*
*        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T'  or  W( 1:m, 1:k ) * T
*
         CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
     $               LDT, WORK, LDWORK )
*
*        C( 1:k, 1:n ) = C( 1:k, 1:n ) - conjg( W( 1:n, 1:k )' )
*
         DO 30 J = 1, N
            DO 20 I = 1, K
               C( I, J ) = C( I, J ) - WORK( J, I )
   20       CONTINUE
   30    CONTINUE
*
*        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
*                    conjg( V( 1:k, 1:l )' ) * conjg( W( 1:n, 1:k )' )
*
         IF( L.GT.0 )
     $      CALL ZGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
     $                  WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
*
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*        Form  C * H  or  C * H'
*
*        W( 1:m, 1:k ) = C( 1:m, 1:k )
*
         DO 40 J = 1, K
            CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
   40    CONTINUE
*
*        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
*                        C( 1:m, n-l+1:n ) * conjg( V( 1:k, 1:l )' )
*
         IF( L.GT.0 )
     $      CALL ZGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
     $                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
*
*        W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T )  or
*                        W( 1:m, 1:k ) * conjg( T' )
*
         DO 50 J = 1, K
            CALL ZLACGV( K-J+1, T( J, J ), 1 )
   50    CONTINUE
         CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
     $               LDT, WORK, LDWORK )
         DO 60 J = 1, K
            CALL ZLACGV( K-J+1, T( J, J ), 1 )
   60    CONTINUE
*
*        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
*
         DO 80 J = 1, K
            DO 70 I = 1, M
               C( I, J ) = C( I, J ) - WORK( I, J )
   70       CONTINUE
   80    CONTINUE
*
*        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
*                            W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
*
         DO 90 J = 1, L
            CALL ZLACGV( K, V( 1, J ), 1 )
   90    CONTINUE
         IF( L.GT.0 )
     $      CALL ZGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
     $                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
         DO 100 J = 1, L
            CALL ZLACGV( K, V( 1, J ), 1 )
  100    CONTINUE
*
      END IF
*
      RETURN
*
*     End of ZLARZB
*
      END