1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
$ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
$ NV, WV, LDWV, WORK, LWORK )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
$ LDZ, LWORK, N, ND, NH, NS, NV, NW
LOGICAL WANTT, WANTZ
* ..
* .. Array Arguments ..
COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
$ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
* ..
*
* ******************************************************************
* Aggressive early deflation:
*
* This subroutine accepts as input an upper Hessenberg matrix
* H and performs an unitary similarity transformation
* designed to detect and deflate fully converged eigenvalues from
* a trailing principal submatrix. On output H has been over-
* written by a new Hessenberg matrix that is a perturbation of
* an unitary similarity transformation of H. It is to be
* hoped that the final version of H has many zero subdiagonal
* entries.
*
* ******************************************************************
* WANTT (input) LOGICAL
* If .TRUE., then the Hessenberg matrix H is fully updated
* so that the triangular Schur factor may be
* computed (in cooperation with the calling subroutine).
* If .FALSE., then only enough of H is updated to preserve
* the eigenvalues.
*
* WANTZ (input) LOGICAL
* If .TRUE., then the unitary matrix Z is updated so
* so that the unitary Schur factor may be computed
* (in cooperation with the calling subroutine).
* If .FALSE., then Z is not referenced.
*
* N (input) INTEGER
* The order of the matrix H and (if WANTZ is .TRUE.) the
* order of the unitary matrix Z.
*
* KTOP (input) INTEGER
* It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
* KBOT and KTOP together determine an isolated block
* along the diagonal of the Hessenberg matrix.
*
* KBOT (input) INTEGER
* It is assumed without a check that either
* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
* determine an isolated block along the diagonal of the
* Hessenberg matrix.
*
* NW (input) INTEGER
* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
*
* H (input/output) COMPLEX*16 array, dimension (LDH,N)
* On input the initial N-by-N section of H stores the
* Hessenberg matrix undergoing aggressive early deflation.
* On output H has been transformed by a unitary
* similarity transformation, perturbed, and the returned
* to Hessenberg form that (it is to be hoped) has some
* zero subdiagonal entries.
*
* LDH (input) integer
* Leading dimension of H just as declared in the calling
* subroutine. N .LE. LDH
*
* ILOZ (input) INTEGER
* IHIZ (input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
*
* Z (input/output) COMPLEX*16 array, dimension (LDZ,IHI)
* IF WANTZ is .TRUE., then on output, the unitary
* similarity transformation mentioned above has been
* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
* If WANTZ is .FALSE., then Z is unreferenced.
*
* LDZ (input) integer
* The leading dimension of Z just as declared in the
* calling subroutine. 1 .LE. LDZ.
*
* NS (output) integer
* The number of unconverged (ie approximate) eigenvalues
* returned in SR and SI that may be used as shifts by the
* calling subroutine.
*
* ND (output) integer
* The number of converged eigenvalues uncovered by this
* subroutine.
*
* SH (output) COMPLEX*16 array, dimension KBOT
* On output, approximate eigenvalues that may
* be used for shifts are stored in SH(KBOT-ND-NS+1)
* through SR(KBOT-ND). Converged eigenvalues are
* stored in SH(KBOT-ND+1) through SH(KBOT).
*
* V (workspace) COMPLEX*16 array, dimension (LDV,NW)
* An NW-by-NW work array.
*
* LDV (input) integer scalar
* The leading dimension of V just as declared in the
* calling subroutine. NW .LE. LDV
*
* NH (input) integer scalar
* The number of columns of T. NH.GE.NW.
*
* T (workspace) COMPLEX*16 array, dimension (LDT,NW)
*
* LDT (input) integer
* The leading dimension of T just as declared in the
* calling subroutine. NW .LE. LDT
*
* NV (input) integer
* The number of rows of work array WV available for
* workspace. NV.GE.NW.
*
* WV (workspace) COMPLEX*16 array, dimension (LDWV,NW)
*
* LDWV (input) integer
* The leading dimension of W just as declared in the
* calling subroutine. NW .LE. LDV
*
* WORK (workspace) COMPLEX*16 array, dimension LWORK.
* On exit, WORK(1) is set to an estimate of the optimal value
* of LWORK for the given values of N, NW, KTOP and KBOT.
*
* LWORK (input) integer
* The dimension of the work array WORK. LWORK = 2*NW
* suffices, but greater efficiency may result from larger
* values of LWORK.
*
* If LWORK = -1, then a workspace query is assumed; ZLAQR3
* only estimates the optimal workspace size for the given
* values of N, NW, KTOP and KBOT. The estimate is returned
* in WORK(1). No error message related to LWORK is issued
* by XERBLA. Neither H nor Z are accessed.
*
* ================================================================
* Based on contributions by
* Karen Braman and Ralph Byers, Department of Mathematics,
* University of Kansas, USA
*
* ==================================================================
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
$ ONE = ( 1.0d0, 0.0d0 ) )
DOUBLE PRECISION RZERO, RONE
PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0 )
* ..
* .. Local Scalars ..
COMPLEX*16 BETA, CDUM, S, TAU
DOUBLE PRECISION FOO, SAFMAX, SAFMIN, SMLNUM, ULP
INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
$ KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
$ LWKOPT, NMIN
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
INTEGER ILAENV
EXTERNAL DLAMCH, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
$ ZLAQR4, ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNGHR
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
* ==== Estimate optimal workspace. ====
*
JW = MIN( NW, KBOT-KTOP+1 )
IF( JW.LE.2 ) THEN
LWKOPT = 1
ELSE
*
* ==== Workspace query call to ZGEHRD ====
*
CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
LWK1 = INT( WORK( 1 ) )
*
* ==== Workspace query call to ZUNGHR ====
*
CALL ZUNGHR( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
LWK2 = INT( WORK( 1 ) )
*
* ==== Workspace query call to ZLAQR4 ====
*
CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V,
$ LDV, WORK, -1, INFQR )
LWK3 = INT( WORK( 1 ) )
*
* ==== Optimal workspace ====
*
LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
END IF
*
* ==== Quick return in case of workspace query. ====
*
IF( LWORK.EQ.-1 ) THEN
WORK( 1 ) = DCMPLX( LWKOPT, 0 )
RETURN
END IF
*
* ==== Nothing to do ...
* ... for an empty active block ... ====
NS = 0
ND = 0
IF( KTOP.GT.KBOT )
$ RETURN
* ... nor for an empty deflation window. ====
IF( NW.LT.1 )
$ RETURN
*
* ==== Machine constants ====
*
SAFMIN = DLAMCH( 'SAFE MINIMUM' )
SAFMAX = RONE / SAFMIN
CALL DLABAD( SAFMIN, SAFMAX )
ULP = DLAMCH( 'PRECISION' )
SMLNUM = SAFMIN*( DBLE( N ) / ULP )
*
* ==== Setup deflation window ====
*
JW = MIN( NW, KBOT-KTOP+1 )
KWTOP = KBOT - JW + 1
IF( KWTOP.EQ.KTOP ) THEN
S = ZERO
ELSE
S = H( KWTOP, KWTOP-1 )
END IF
*
IF( KBOT.EQ.KWTOP ) THEN
*
* ==== 1-by-1 deflation window: not much to do ====
*
SH( KWTOP ) = H( KWTOP, KWTOP )
NS = 1
ND = 0
IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
$ KWTOP ) ) ) ) THEN
NS = 0
ND = 1
IF( KWTOP.GT.KTOP )
$ H( KWTOP, KWTOP-1 ) = ZERO
END IF
RETURN
END IF
*
* ==== Convert to spike-triangular form. (In case of a
* . rare QR failure, this routine continues to do
* . aggressive early deflation using that part of
* . the deflation window that converged using INFQR
* . here and there to keep track.) ====
*
CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
*
CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
NMIN = ILAENV( 12, 'ZLAQR3', 'SV', JW, 1, JW, LWORK )
IF( JW.GT.NMIN ) THEN
CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
$ JW, V, LDV, WORK, LWORK, INFQR )
ELSE
CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
$ JW, V, LDV, INFQR )
END IF
*
* ==== Deflation detection loop ====
*
NS = JW
ILST = INFQR + 1
DO 10 KNT = INFQR + 1, JW
*
* ==== Small spike tip deflation test ====
*
FOO = CABS1( T( NS, NS ) )
IF( FOO.EQ.RZERO )
$ FOO = CABS1( S )
IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
$ THEN
*
* ==== One more converged eigenvalue ====
*
NS = NS - 1
ELSE
*
* ==== One undflatable eigenvalue. Move it up out of the
* . way. (ZTREXC can not fail in this case.) ====
*
IFST = NS
CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
ILST = ILST + 1
END IF
10 CONTINUE
*
* ==== Return to Hessenberg form ====
*
IF( NS.EQ.0 )
$ S = ZERO
*
IF( NS.LT.JW ) THEN
*
* ==== sorting the diagonal of T improves accuracy for
* . graded matrices. ====
*
DO 30 I = INFQR + 1, NS
IFST = I
DO 20 J = I + 1, NS
IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
$ IFST = J
20 CONTINUE
ILST = I
IF( IFST.NE.ILST )
$ CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
30 CONTINUE
END IF
*
* ==== Restore shift/eigenvalue array from T ====
*
DO 40 I = INFQR + 1, JW
SH( KWTOP+I-1 ) = T( I, I )
40 CONTINUE
*
*
IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
*
* ==== Reflect spike back into lower triangle ====
*
CALL ZCOPY( NS, V, LDV, WORK, 1 )
DO 50 I = 1, NS
WORK( I ) = DCONJG( WORK( I ) )
50 CONTINUE
BETA = WORK( 1 )
CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
WORK( 1 ) = ONE
*
CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
*
CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
$ WORK( JW+1 ) )
CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
$ WORK( JW+1 ) )
CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
$ WORK( JW+1 ) )
*
CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
$ LWORK-JW, INFO )
END IF
*
* ==== Copy updated reduced window into place ====
*
IF( KWTOP.GT.1 )
$ H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
$ LDH+1 )
*
* ==== Accumulate orthogonal matrix in order update
* . H and Z, if requested. (A modified version
* . of ZUNGHR that accumulates block Householder
* . transformations into V directly might be
* . marginally more efficient than the following.) ====
*
IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
CALL ZUNGHR( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
$ LWORK-JW, INFO )
CALL ZGEMM( 'N', 'N', JW, NS, NS, ONE, V, LDV, T, LDT, ZERO,
$ WV, LDWV )
CALL ZLACPY( 'A', JW, NS, WV, LDWV, V, LDV )
END IF
*
* ==== Update vertical slab in H ====
*
IF( WANTT ) THEN
LTOP = 1
ELSE
LTOP = KTOP
END IF
DO 60 KROW = LTOP, KWTOP - 1, NV
KLN = MIN( NV, KWTOP-KROW )
CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
$ LDH, V, LDV, ZERO, WV, LDWV )
CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
60 CONTINUE
*
* ==== Update horizontal slab in H ====
*
IF( WANTT ) THEN
DO 70 KCOL = KBOT + 1, N, NH
KLN = MIN( NH, N-KCOL+1 )
CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
$ H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
$ LDH )
70 CONTINUE
END IF
*
* ==== Update vertical slab in Z ====
*
IF( WANTZ ) THEN
DO 80 KROW = ILOZ, IHIZ, NV
KLN = MIN( NV, IHIZ-KROW+1 )
CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
$ LDZ, V, LDV, ZERO, WV, LDWV )
CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
$ LDZ )
80 CONTINUE
END IF
END IF
*
* ==== Return the number of deflations ... ====
*
ND = JW - NS
*
* ==== ... and the number of shifts. (Subtracting
* . INFQR from the spike length takes care
* . of the case of a rare QR failure while
* . calculating eigenvalues of the deflation
* . window.) ====
*
NS = NS - INFQR
*
* ==== Return optimal workspace. ====
*
WORK( 1 ) = DCMPLX( LWKOPT, 0 )
*
* ==== End of ZLAQR3 ====
*
END
|