1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
SUBROUTINE ZHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
$ WORK, LWORK, INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
CHARACTER COMPZ, JOB
* ..
* .. Array Arguments ..
COMPLEX*16 H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
* ..
* Purpose
* =======
*
* ZHSEQR computes the eigenvalues of a Hessenberg matrix H
* and, optionally, the matrices T and Z from the Schur decomposition
* H = Z T Z**H, where T is an upper triangular matrix (the
* Schur form), and Z is the unitary matrix of Schur vectors.
*
* Optionally Z may be postmultiplied into an input unitary
* matrix Q so that this routine can give the Schur factorization
* of a matrix A which has been reduced to the Hessenberg form H
* by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H.
*
* Arguments
* =========
*
* JOB (input) CHARACTER*1
* = 'E': compute eigenvalues only;
* = 'S': compute eigenvalues and the Schur form T.
*
* COMPZ (input) CHARACTER*1
* = 'N': no Schur vectors are computed;
* = 'I': Z is initialized to the unit matrix and the matrix Z
* of Schur vectors of H is returned;
* = 'V': Z must contain an unitary matrix Q on entry, and
* the product Q*Z is returned.
*
* N (input) INTEGER
* The order of the matrix H. N .GE. 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that H is already upper triangular in rows
* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
* set by a previous call to ZGEBAL, and then passed to ZGEHRD
* when the matrix output by ZGEBAL is reduced to Hessenberg
* form. Otherwise ILO and IHI should be set to 1 and N
* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
* If N = 0, then ILO = 1 and IHI = 0.
*
* H (input/output) COMPLEX*16 array, dimension (LDH,N)
* On entry, the upper Hessenberg matrix H.
* On exit, if INFO = 0 and JOB = 'S', H contains the upper
* triangular matrix T from the Schur decomposition (the
* Schur form). If INFO = 0 and JOB = 'E', the contents of
* H are unspecified on exit. (The output value of H when
* INFO.GT.0 is given under the description of INFO below.)
*
* Unlike earlier versions of ZHSEQR, this subroutine may
* explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
* or j = IHI+1, IHI+2, ... N.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH .GE. max(1,N).
*
* W (output) COMPLEX*16 array, dimension (N)
* The computed eigenvalues. If JOB = 'S', the eigenvalues are
* stored in the same order as on the diagonal of the Schur
* form returned in H, with W(i) = H(i,i).
*
* Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
* If COMPZ = 'N', Z is not referenced.
* If COMPZ = 'I', on entry Z need not be set and on exit,
* if INFO = 0, Z contains the unitary matrix Z of the Schur
* vectors of H. If COMPZ = 'V', on entry Z must contain an
* N-by-N matrix Q, which is assumed to be equal to the unit
* matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
* if INFO = 0, Z contains Q*Z.
* Normally Q is the unitary matrix generated by ZUNGHR
* after the call to ZGEHRD which formed the Hessenberg matrix
* H. (The output value of Z when INFO.GT.0 is given under
* the description of INFO below.)
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. if COMPZ = 'I' or
* COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
*
* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns an estimate of
* the optimal value for LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK .GE. max(1,N)
* is sufficient, but LWORK typically as large as 6*N may
* be required for optimal performance. A workspace query
* to determine the optimal workspace size is recommended.
*
* If LWORK = -1, then ZHSEQR does a workspace query.
* In this case, ZHSEQR checks the input parameters and
* estimates the optimal workspace size for the given
* values of N, ILO and IHI. The estimate is returned
* in WORK(1). No error message related to LWORK is
* issued by XERBLA. Neither H nor Z are accessed.
*
*
* INFO (output) INTEGER
* = 0: successful exit
* .LT. 0: if INFO = -i, the i-th argument had an illegal
* value
* .GT. 0: if INFO = i, ZHSEQR failed to compute all of
* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
* and WI contain those eigenvalues which have been
* successfully computed. (Failures are rare.)
*
* If INFO .GT. 0 and JOB = 'E', then on exit, the
* remaining unconverged eigenvalues are the eigen-
* values of the upper Hessenberg matrix rows and
* columns ILO through INFO of the final, output
* value of H.
*
* If INFO .GT. 0 and JOB = 'S', then on exit
*
* (*) (initial value of H)*U = U*(final value of H)
*
* where U is a unitary matrix. The final
* value of H is upper Hessenberg and triangular in
* rows and columns INFO+1 through IHI.
*
* If INFO .GT. 0 and COMPZ = 'V', then on exit
*
* (final value of Z) = (initial value of Z)*U
*
* where U is the unitary matrix in (*) (regard-
* less of the value of JOB.)
*
* If INFO .GT. 0 and COMPZ = 'I', then on exit
* (final value of Z) = U
* where U is the unitary matrix in (*) (regard-
* less of the value of JOB.)
*
* If INFO .GT. 0 and COMPZ = 'N', then Z is not
* accessed.
*
* ================================================================
* Default values supplied by
* ILAENV(ISPEC,'ZHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
* It is suggested that these defaults be adjusted in order
* to attain best performance in each particular
* computational environment.
*
* ISPEC=1: The ZLAHQR vs ZLAQR0 crossover point.
* Default: 75. (Must be at least 11.)
*
* ISPEC=2: Recommended deflation window size.
* This depends on ILO, IHI and NS. NS is the
* number of simultaneous shifts returned
* by ILAENV(ISPEC=4). (See ISPEC=4 below.)
* The default for (IHI-ILO+1).LE.500 is NS.
* The default for (IHI-ILO+1).GT.500 is 3*NS/2.
*
* ISPEC=3: Nibble crossover point. (See ILAENV for
* details.) Default: 14% of deflation window
* size.
*
* ISPEC=4: Number of simultaneous shifts, NS, in
* a multi-shift QR iteration.
*
* If IHI-ILO+1 is ...
*
* greater than ...but less ... the
* or equal to ... than default is
*
* 1 30 NS - 2(+)
* 30 60 NS - 4(+)
* 60 150 NS = 10(+)
* 150 590 NS = **
* 590 3000 NS = 64
* 3000 6000 NS = 128
* 6000 infinity NS = 256
*
* (+) By default some or all matrices of this order
* are passed to the implicit double shift routine
* ZLAHQR and NS is ignored. See ISPEC=1 above
* and comments in IPARM for details.
*
* The asterisks (**) indicate an ad-hoc
* function of N increasing from 10 to 64.
*
* ISPEC=5: Select structured matrix multiply.
* (See ILAENV for details.) Default: 3.
*
* ================================================================
* Based on contributions by
* Karen Braman and Ralph Byers, Department of Mathematics,
* University of Kansas, USA
*
* ================================================================
* References:
* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
* Performance, SIAM Journal of Matrix Analysis, volume 23, pages
* 929--947, 2002.
*
* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
* Algorithm Part II: Aggressive Early Deflation, SIAM Journal
* of Matrix Analysis, volume 23, pages 948--973, 2002.
*
* ================================================================
* .. Parameters ..
*
* ==== Matrices of order NTINY or smaller must be processed by
* . ZLAHQR because of insufficient subdiagonal scratch space.
* . (This is a hard limit.) ====
*
* ==== NL allocates some local workspace to help small matrices
* . through a rare ZLAHQR failure. NL .GT. NTINY = 11 is
* . required and NL .LE. NMIN = ILAENV(ISPEC=1,...) is recom-
* . mended. (The default value of NMIN is 75.) Using NL = 49
* . allows up to six simultaneous shifts and a 16-by-16
* . deflation window. ====
*
INTEGER NTINY
PARAMETER ( NTINY = 11 )
INTEGER NL
PARAMETER ( NL = 49 )
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
$ ONE = ( 1.0d0, 0.0d0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0d0 )
* ..
* .. Local Arrays ..
COMPLEX*16 HL( NL, NL ), WORKL( NL )
* ..
* .. Local Scalars ..
INTEGER KBOT, NMIN
LOGICAL INITZ, LQUERY, WANTT, WANTZ
* ..
* .. External Functions ..
INTEGER ILAENV
LOGICAL LSAME
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZCOPY, ZLACPY, ZLAHQR, ZLAQR0, ZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, MAX, MIN
* ..
* .. Executable Statements ..
*
* ==== Decode and check the input parameters. ====
*
WANTT = LSAME( JOB, 'S' )
INITZ = LSAME( COMPZ, 'I' )
WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
WORK( 1 ) = DCMPLX( DBLE( MAX( 1, N ) ), RZERO )
LQUERY = LWORK.EQ.-1
*
INFO = 0
IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -5
ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
INFO = -10
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
*
IF( INFO.NE.0 ) THEN
*
* ==== Quick return in case of invalid argument. ====
*
CALL XERBLA( 'ZHSEQR', -INFO )
RETURN
*
ELSE IF( N.EQ.0 ) THEN
*
* ==== Quick return in case N = 0; nothing to do. ====
*
RETURN
*
ELSE IF( LQUERY ) THEN
*
* ==== Quick return in case of a workspace query ====
*
CALL ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI, Z,
$ LDZ, WORK, LWORK, INFO )
* ==== Ensure reported workspace size is backward-compatible with
* . previous LAPACK versions. ====
WORK( 1 ) = DCMPLX( MAX( DBLE( WORK( 1 ) ), DBLE( MAX( 1,
$ N ) ) ), RZERO )
RETURN
*
ELSE
*
* ==== copy eigenvalues isolated by ZGEBAL ====
*
IF( ILO.GT.1 )
$ CALL ZCOPY( ILO-1, H, LDH+1, W, 1 )
IF( IHI.LT.N )
$ CALL ZCOPY( N-IHI, H( IHI+1, IHI+1 ), LDH+1, W( IHI+1 ), 1 )
*
* ==== Initialize Z, if requested ====
*
IF( INITZ )
$ CALL ZLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
*
* ==== Quick return if possible ====
*
IF( ILO.EQ.IHI ) THEN
W( ILO ) = H( ILO, ILO )
RETURN
END IF
*
* ==== ZLAHQR/ZLAQR0 crossover point ====
*
NMIN = ILAENV( 1, 'ZHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N, ILO,
$ IHI, LWORK )
NMIN = MAX( NTINY, NMIN )
*
* ==== ZLAQR0 for big matrices; ZLAHQR for small ones ====
*
IF( N.GT.NMIN ) THEN
CALL ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
$ Z, LDZ, WORK, LWORK, INFO )
ELSE
*
* ==== Small matrix ====
*
CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
$ Z, LDZ, INFO )
*
IF( INFO.GT.0 ) THEN
*
* ==== A rare ZLAHQR failure! ZLAQR0 sometimes succeeds
* . when ZLAHQR fails. ====
*
KBOT = INFO
*
IF( N.GE.NL ) THEN
*
* ==== Larger matrices have enough subdiagonal scratch
* . space to call ZLAQR0 directly. ====
*
CALL ZLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, W,
$ ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
*
ELSE
*
* ==== Tiny matrices don't have enough subdiagonal
* . scratch space to benefit from ZLAQR0. Hence,
* . tiny matrices must be copied into a larger
* . array before calling ZLAQR0. ====
*
CALL ZLACPY( 'A', N, N, H, LDH, HL, NL )
HL( N+1, N ) = ZERO
CALL ZLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
$ NL )
CALL ZLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, W,
$ ILO, IHI, Z, LDZ, WORKL, NL, INFO )
IF( WANTT .OR. INFO.NE.0 )
$ CALL ZLACPY( 'A', N, N, HL, NL, H, LDH )
END IF
END IF
END IF
*
* ==== Clear out the trash, if necessary. ====
*
IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
$ CALL ZLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
*
* ==== Ensure reported workspace size is backward-compatible with
* . previous LAPACK versions. ====
*
WORK( 1 ) = DCMPLX( MAX( DBLE( MAX( 1, N ) ),
$ DBLE( WORK( 1 ) ) ), RZERO )
END IF
*
* ==== End of ZHSEQR ====
*
END
|