summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zggev.f
blob: 94fb3dc29a3c8292880df281664e11f99e717c12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
      SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
     $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVL, JOBVR
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
     $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
*  (A,B), the generalized eigenvalues, and optionally, the left and/or
*  right generalized eigenvectors.
*
*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
*  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
*  singular. It is usually represented as the pair (alpha,beta), as
*  there is a reasonable interpretation for beta=0, and even for both
*  being zero.
*
*  The right generalized eigenvector v(j) corresponding to the
*  generalized eigenvalue lambda(j) of (A,B) satisfies
*
*               A * v(j) = lambda(j) * B * v(j).
*
*  The left generalized eigenvector u(j) corresponding to the
*  generalized eigenvalues lambda(j) of (A,B) satisfies
*
*               u(j)**H * A = lambda(j) * u(j)**H * B
*
*  where u(j)**H is the conjugate-transpose of u(j).
*
*  Arguments
*  =========
*
*  JOBVL   (input) CHARACTER*1
*          = 'N':  do not compute the left generalized eigenvectors;
*          = 'V':  compute the left generalized eigenvectors.
*
*  JOBVR   (input) CHARACTER*1
*          = 'N':  do not compute the right generalized eigenvectors;
*          = 'V':  compute the right generalized eigenvectors.
*
*  N       (input) INTEGER
*          The order of the matrices A, B, VL, and VR.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
*          On entry, the matrix A in the pair (A,B).
*          On exit, A has been overwritten.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  LDA >= max(1,N).
*
*  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
*          On entry, the matrix B in the pair (A,B).
*          On exit, B has been overwritten.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.  LDB >= max(1,N).
*
*  ALPHA   (output) COMPLEX*16 array, dimension (N)
*  BETA    (output) COMPLEX*16 array, dimension (N)
*          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
*          generalized eigenvalues.
*
*          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
*          underflow, and BETA(j) may even be zero.  Thus, the user
*          should avoid naively computing the ratio alpha/beta.
*          However, ALPHA will be always less than and usually
*          comparable with norm(A) in magnitude, and BETA always less
*          than and usually comparable with norm(B).
*
*  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
*          If JOBVL = 'V', the left generalized eigenvectors u(j) are
*          stored one after another in the columns of VL, in the same
*          order as their eigenvalues.
*          Each eigenvector is scaled so the largest component has
*          abs(real part) + abs(imag. part) = 1.
*          Not referenced if JOBVL = 'N'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the matrix VL. LDVL >= 1, and
*          if JOBVL = 'V', LDVL >= N.
*
*  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
*          If JOBVR = 'V', the right generalized eigenvectors v(j) are
*          stored one after another in the columns of VR, in the same
*          order as their eigenvalues.
*          Each eigenvector is scaled so the largest component has
*          abs(real part) + abs(imag. part) = 1.
*          Not referenced if JOBVR = 'N'.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the matrix VR. LDVR >= 1, and
*          if JOBVR = 'V', LDVR >= N.
*
*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,2*N).
*          For good performance, LWORK must generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (8*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          =1,...,N:
*                The QZ iteration failed.  No eigenvectors have been
*                calculated, but ALPHA(j) and BETA(j) should be
*                correct for j=INFO+1,...,N.
*          > N:  =N+1: other then QZ iteration failed in DHGEQZ,
*                =N+2: error return from DTGEVC.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
     $                   CONE = ( 1.0D0, 0.0D0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
      CHARACTER          CHTEMP
      INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
     $                   IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
     $                   LWKMIN, LWKOPT
      DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
     $                   SMLNUM, TEMP
      COMPLEX*16         X
*     ..
*     .. Local Arrays ..
      LOGICAL            LDUMMA( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
     $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
     $                   ZUNMQR
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   ABS1
*     ..
*     .. Statement Function definitions ..
      ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
*     ..
*     .. Executable Statements ..
*
*     Decode the input arguments
*
      IF( LSAME( JOBVL, 'N' ) ) THEN
         IJOBVL = 1
         ILVL = .FALSE.
      ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
         IJOBVL = 2
         ILVL = .TRUE.
      ELSE
         IJOBVL = -1
         ILVL = .FALSE.
      END IF
*
      IF( LSAME( JOBVR, 'N' ) ) THEN
         IJOBVR = 1
         ILVR = .FALSE.
      ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
         IJOBVR = 2
         ILVR = .TRUE.
      ELSE
         IJOBVR = -1
         ILVR = .FALSE.
      END IF
      ILV = ILVL .OR. ILVR
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( IJOBVL.LE.0 ) THEN
         INFO = -1
      ELSE IF( IJOBVR.LE.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
         INFO = -11
      ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
         INFO = -13
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV. The workspace is
*       computed assuming ILO = 1 and IHI = N, the worst case.)
*
      IF( INFO.EQ.0 ) THEN
         LWKMIN = MAX( 1, 2*N )
         LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
         LWKOPT = MAX( LWKOPT, N +
     $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
         IF( ILVL ) THEN
            LWKOPT = MAX( LWKOPT, N +
     $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
         END IF
         WORK( 1 ) = LWKOPT
*
         IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
     $      INFO = -15
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGGEV ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
      ILASCL = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         ANRMTO = SMLNUM
         ILASCL = .TRUE.
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         ANRMTO = BIGNUM
         ILASCL = .TRUE.
      END IF
      IF( ILASCL )
     $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
*
*     Scale B if max element outside range [SMLNUM,BIGNUM]
*
      BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
      ILBSCL = .FALSE.
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
         BNRMTO = SMLNUM
         ILBSCL = .TRUE.
      ELSE IF( BNRM.GT.BIGNUM ) THEN
         BNRMTO = BIGNUM
         ILBSCL = .TRUE.
      END IF
      IF( ILBSCL )
     $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
*
*     Permute the matrices A, B to isolate eigenvalues if possible
*     (Real Workspace: need 6*N)
*
      ILEFT = 1
      IRIGHT = N + 1
      IRWRK = IRIGHT + N
      CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
     $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
*
*     Reduce B to triangular form (QR decomposition of B)
*     (Complex Workspace: need N, prefer N*NB)
*
      IROWS = IHI + 1 - ILO
      IF( ILV ) THEN
         ICOLS = N + 1 - ILO
      ELSE
         ICOLS = IROWS
      END IF
      ITAU = 1
      IWRK = ITAU + IROWS
      CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
*
*     Apply the orthogonal transformation to matrix A
*     (Complex Workspace: need N, prefer N*NB)
*
      CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
     $             LWORK+1-IWRK, IERR )
*
*     Initialize VL
*     (Complex Workspace: need N, prefer N*NB)
*
      IF( ILVL ) THEN
         CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
         IF( IROWS.GT.1 ) THEN
            CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
     $                   VL( ILO+1, ILO ), LDVL )
         END IF
         CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
     $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
      END IF
*
*     Initialize VR
*
      IF( ILVR )
     $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
*
*     Reduce to generalized Hessenberg form
*
      IF( ILV ) THEN
*
*        Eigenvectors requested -- work on whole matrix.
*
         CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
     $                LDVL, VR, LDVR, IERR )
      ELSE
         CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
     $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
      END IF
*
*     Perform QZ algorithm (Compute eigenvalues, and optionally, the
*     Schur form and Schur vectors)
*     (Complex Workspace: need N)
*     (Real Workspace: need N)
*
      IWRK = ITAU
      IF( ILV ) THEN
         CHTEMP = 'S'
      ELSE
         CHTEMP = 'E'
      END IF
      CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
     $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
     $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
      IF( IERR.NE.0 ) THEN
         IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
            INFO = IERR
         ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
            INFO = IERR - N
         ELSE
            INFO = N + 1
         END IF
         GO TO 70
      END IF
*
*     Compute Eigenvectors
*     (Real Workspace: need 2*N)
*     (Complex Workspace: need 2*N)
*
      IF( ILV ) THEN
         IF( ILVL ) THEN
            IF( ILVR ) THEN
               CHTEMP = 'B'
            ELSE
               CHTEMP = 'L'
            END IF
         ELSE
            CHTEMP = 'R'
         END IF
*
         CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
     $                VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
     $                IERR )
         IF( IERR.NE.0 ) THEN
            INFO = N + 2
            GO TO 70
         END IF
*
*        Undo balancing on VL and VR and normalization
*        (Workspace: none needed)
*
         IF( ILVL ) THEN
            CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
     $                   RWORK( IRIGHT ), N, VL, LDVL, IERR )
            DO 30 JC = 1, N
               TEMP = ZERO
               DO 10 JR = 1, N
                  TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
   10          CONTINUE
               IF( TEMP.LT.SMLNUM )
     $            GO TO 30
               TEMP = ONE / TEMP
               DO 20 JR = 1, N
                  VL( JR, JC ) = VL( JR, JC )*TEMP
   20          CONTINUE
   30       CONTINUE
         END IF
         IF( ILVR ) THEN
            CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
     $                   RWORK( IRIGHT ), N, VR, LDVR, IERR )
            DO 60 JC = 1, N
               TEMP = ZERO
               DO 40 JR = 1, N
                  TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
   40          CONTINUE
               IF( TEMP.LT.SMLNUM )
     $            GO TO 60
               TEMP = ONE / TEMP
               DO 50 JR = 1, N
                  VR( JR, JC ) = VR( JR, JC )*TEMP
   50          CONTINUE
   60       CONTINUE
         END IF
      END IF
*
*     Undo scaling if necessary
*
      IF( ILASCL )
     $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
*
      IF( ILBSCL )
     $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
*
   70 CONTINUE
      WORK( 1 ) = LWKOPT
*
      RETURN
*
*     End of ZGGEV
*
      END