summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zggbak.f
blob: ad6dd032d2874e69f6861029cb1b1503d98bcce1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
      SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
     $                   LDV, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOB, SIDE
      INTEGER            IHI, ILO, INFO, LDV, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
      COMPLEX*16         V( LDV, * )
*     ..
*
*  Purpose
*  =======
*
*  ZGGBAK forms the right or left eigenvectors of a complex generalized
*  eigenvalue problem A*x = lambda*B*x, by backward transformation on
*  the computed eigenvectors of the balanced pair of matrices output by
*  ZGGBAL.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies the type of backward transformation required:
*          = 'N':  do nothing, return immediately;
*          = 'P':  do backward transformation for permutation only;
*          = 'S':  do backward transformation for scaling only;
*          = 'B':  do backward transformations for both permutation and
*                  scaling.
*          JOB must be the same as the argument JOB supplied to ZGGBAL.
*
*  SIDE    (input) CHARACTER*1
*          = 'R':  V contains right eigenvectors;
*          = 'L':  V contains left eigenvectors.
*
*  N       (input) INTEGER
*          The number of rows of the matrix V.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          The integers ILO and IHI determined by ZGGBAL.
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  LSCALE  (input) DOUBLE PRECISION array, dimension (N)
*          Details of the permutations and/or scaling factors applied
*          to the left side of A and B, as returned by ZGGBAL.
*
*  RSCALE  (input) DOUBLE PRECISION array, dimension (N)
*          Details of the permutations and/or scaling factors applied
*          to the right side of A and B, as returned by ZGGBAL.
*
*  M       (input) INTEGER
*          The number of columns of the matrix V.  M >= 0.
*
*  V       (input/output) COMPLEX*16 array, dimension (LDV,M)
*          On entry, the matrix of right or left eigenvectors to be
*          transformed, as returned by ZTGEVC.
*          On exit, V is overwritten by the transformed eigenvectors.
*
*  LDV     (input) INTEGER
*          The leading dimension of the matrix V. LDV >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  See R.C. Ward, Balancing the generalized eigenvalue problem,
*                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LEFTV, RIGHTV
      INTEGER            I, K
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL, ZSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      RIGHTV = LSAME( SIDE, 'R' )
      LEFTV = LSAME( SIDE, 'L' )
*
      INFO = 0
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ILO.LT.1 ) THEN
         INFO = -4
      ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
         INFO = -4
      ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
     $   THEN
         INFO = -5
      ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -8
      ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGGBAK', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( M.EQ.0 )
     $   RETURN
      IF( LSAME( JOB, 'N' ) )
     $   RETURN
*
      IF( ILO.EQ.IHI )
     $   GO TO 30
*
*     Backward balance
*
      IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
*        Backward transformation on right eigenvectors
*
         IF( RIGHTV ) THEN
            DO 10 I = ILO, IHI
               CALL ZDSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
   10       CONTINUE
         END IF
*
*        Backward transformation on left eigenvectors
*
         IF( LEFTV ) THEN
            DO 20 I = ILO, IHI
               CALL ZDSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
   20       CONTINUE
         END IF
      END IF
*
*     Backward permutation
*
   30 CONTINUE
      IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
*        Backward permutation on right eigenvectors
*
         IF( RIGHTV ) THEN
            IF( ILO.EQ.1 )
     $         GO TO 50
            DO 40 I = ILO - 1, 1, -1
               K = RSCALE( I )
               IF( K.EQ.I )
     $            GO TO 40
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   40       CONTINUE
*
   50       CONTINUE
            IF( IHI.EQ.N )
     $         GO TO 70
            DO 60 I = IHI + 1, N
               K = RSCALE( I )
               IF( K.EQ.I )
     $            GO TO 60
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   60       CONTINUE
         END IF
*
*        Backward permutation on left eigenvectors
*
   70    CONTINUE
         IF( LEFTV ) THEN
            IF( ILO.EQ.1 )
     $         GO TO 90
            DO 80 I = ILO - 1, 1, -1
               K = LSCALE( I )
               IF( K.EQ.I )
     $            GO TO 80
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   80       CONTINUE
*
   90       CONTINUE
            IF( IHI.EQ.N )
     $         GO TO 110
            DO 100 I = IHI + 1, N
               K = LSCALE( I )
               IF( K.EQ.I )
     $            GO TO 100
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
  100       CONTINUE
         END IF
      END IF
*
  110 CONTINUE
*
      RETURN
*
*     End of ZGGBAK
*
      END