summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zgesc2.f
blob: d4d5133759e95cd4631aa2514cf5dfe1f1e40b9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
      SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            LDA, N
      DOUBLE PRECISION   SCALE
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * ), JPIV( * )
      COMPLEX*16         A( LDA, * ), RHS( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGESC2 solves a system of linear equations
*
*            A * X = scale* RHS
*
*  with a general N-by-N matrix A using the LU factorization with
*  complete pivoting computed by ZGETC2.
*
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.
*
*  A       (input) COMPLEX*16 array, dimension (LDA, N)
*          On entry, the  LU part of the factorization of the n-by-n
*          matrix A computed by ZGETC2:  A = P * L * U * Q
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1, N).
*
*  RHS     (input/output) COMPLEX*16 array, dimension N.
*          On entry, the right hand side vector b.
*          On exit, the solution vector X.
*
*  IPIV    (input) INTEGER array, dimension (N).
*          The pivot indices; for 1 <= i <= N, row i of the
*          matrix has been interchanged with row IPIV(i).
*
*  JPIV    (input) INTEGER array, dimension (N).
*          The pivot indices; for 1 <= j <= N, column j of the
*          matrix has been interchanged with column JPIV(j).
*
*  SCALE    (output) DOUBLE PRECISION
*           On exit, SCALE contains the scale factor. SCALE is chosen
*           0 <= SCALE <= 1 to prevent owerflow in the solution.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   BIGNUM, EPS, SMLNUM
      COMPLEX*16         TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASWP, ZSCAL
*     ..
*     .. External Functions ..
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           IZAMAX, DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX
*     ..
*     .. Executable Statements ..
*
*     Set constant to control overflow
*
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
*
*     Apply permutations IPIV to RHS
*
      CALL ZLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 )
*
*     Solve for L part
*
      DO 20 I = 1, N - 1
         DO 10 J = I + 1, N
            RHS( J ) = RHS( J ) - A( J, I )*RHS( I )
   10    CONTINUE
   20 CONTINUE
*
*     Solve for U part
*
      SCALE = ONE
*
*     Check for scaling
*
      I = IZAMAX( N, RHS, 1 )
      IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN
         TEMP = DCMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) )
         CALL ZSCAL( N, TEMP, RHS( 1 ), 1 )
         SCALE = SCALE*DBLE( TEMP )
      END IF
      DO 40 I = N, 1, -1
         TEMP = DCMPLX( ONE, ZERO ) / A( I, I )
         RHS( I ) = RHS( I )*TEMP
         DO 30 J = I + 1, N
            RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP )
   30    CONTINUE
   40 CONTINUE
*
*     Apply permutations JPIV to the solution (RHS)
*
      CALL ZLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 )
      RETURN
*
*     End of ZGESC2
*
      END