summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zgebak.f
blob: 1023601d2bf2c215cc99f464d15d338808e68b64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
      SUBROUTINE ZGEBAK( JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV,
     $                   INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOB, SIDE
      INTEGER            IHI, ILO, INFO, LDV, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   SCALE( * )
      COMPLEX*16         V( LDV, * )
*     ..
*
*  Purpose
*  =======
*
*  ZGEBAK forms the right or left eigenvectors of a complex general
*  matrix by backward transformation on the computed eigenvectors of the
*  balanced matrix output by ZGEBAL.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies the type of backward transformation required:
*          = 'N', do nothing, return immediately;
*          = 'P', do backward transformation for permutation only;
*          = 'S', do backward transformation for scaling only;
*          = 'B', do backward transformations for both permutation and
*                 scaling.
*          JOB must be the same as the argument JOB supplied to ZGEBAL.
*
*  SIDE    (input) CHARACTER*1
*          = 'R':  V contains right eigenvectors;
*          = 'L':  V contains left eigenvectors.
*
*  N       (input) INTEGER
*          The number of rows of the matrix V.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          The integers ILO and IHI determined by ZGEBAL.
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  SCALE   (input) DOUBLE PRECISION array, dimension (N)
*          Details of the permutation and scaling factors, as returned
*          by ZGEBAL.
*
*  M       (input) INTEGER
*          The number of columns of the matrix V.  M >= 0.
*
*  V       (input/output) COMPLEX*16 array, dimension (LDV,M)
*          On entry, the matrix of right or left eigenvectors to be
*          transformed, as returned by ZHSEIN or ZTREVC.
*          On exit, V is overwritten by the transformed eigenvectors.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V. LDV >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFTV, RIGHTV
      INTEGER            I, II, K
      DOUBLE PRECISION   S
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL, ZSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Decode and Test the input parameters
*
      RIGHTV = LSAME( SIDE, 'R' )
      LEFTV = LSAME( SIDE, 'L' )
*
      INFO = 0
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -7
      ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGEBAK', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( M.EQ.0 )
     $   RETURN
      IF( LSAME( JOB, 'N' ) )
     $   RETURN
*
      IF( ILO.EQ.IHI )
     $   GO TO 30
*
*     Backward balance
*
      IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
         IF( RIGHTV ) THEN
            DO 10 I = ILO, IHI
               S = SCALE( I )
               CALL ZDSCAL( M, S, V( I, 1 ), LDV )
   10       CONTINUE
         END IF
*
         IF( LEFTV ) THEN
            DO 20 I = ILO, IHI
               S = ONE / SCALE( I )
               CALL ZDSCAL( M, S, V( I, 1 ), LDV )
   20       CONTINUE
         END IF
*
      END IF
*
*     Backward permutation
*
*     For  I = ILO-1 step -1 until 1,
*              IHI+1 step 1 until N do --
*
   30 CONTINUE
      IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
         IF( RIGHTV ) THEN
            DO 40 II = 1, N
               I = II
               IF( I.GE.ILO .AND. I.LE.IHI )
     $            GO TO 40
               IF( I.LT.ILO )
     $            I = ILO - II
               K = SCALE( I )
               IF( K.EQ.I )
     $            GO TO 40
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   40       CONTINUE
         END IF
*
         IF( LEFTV ) THEN
            DO 50 II = 1, N
               I = II
               IF( I.GE.ILO .AND. I.LE.IHI )
     $            GO TO 50
               IF( I.LT.ILO )
     $            I = ILO - II
               K = SCALE( I )
               IF( K.EQ.I )
     $            GO TO 50
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   50       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of ZGEBAK
*
      END