summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dorgbr.f
blob: dc882990ee5a0b16cf7dbcd0f36298fdd987bc58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
      SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          VECT
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DORGBR generates one of the real orthogonal matrices Q or P**T
*  determined by DGEBRD when reducing a real matrix A to bidiagonal
*  form: A = Q * B * P**T.  Q and P**T are defined as products of
*  elementary reflectors H(i) or G(i) respectively.
*
*  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
*  is of order M:
*  if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
*  columns of Q, where m >= n >= k;
*  if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
*  M-by-M matrix.
*
*  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
*  is of order N:
*  if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
*  rows of P**T, where n >= m >= k;
*  if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
*  an N-by-N matrix.
*
*  Arguments
*  =========
*
*  VECT    (input) CHARACTER*1
*          Specifies whether the matrix Q or the matrix P**T is
*          required, as defined in the transformation applied by DGEBRD:
*          = 'Q':  generate Q;
*          = 'P':  generate P**T.
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q or P**T to be returned.
*          M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q or P**T to be returned.
*          N >= 0.
*          If VECT = 'Q', M >= N >= min(M,K);
*          if VECT = 'P', N >= M >= min(N,K).
*
*  K       (input) INTEGER
*          If VECT = 'Q', the number of columns in the original M-by-K
*          matrix reduced by DGEBRD.
*          If VECT = 'P', the number of rows in the original K-by-N
*          matrix reduced by DGEBRD.
*          K >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the vectors which define the elementary reflectors,
*          as returned by DGEBRD.
*          On exit, the M-by-N matrix Q or P**T.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) DOUBLE PRECISION array, dimension
*                                (min(M,K)) if VECT = 'Q'
*                                (min(N,K)) if VECT = 'P'
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i) or G(i), which determines Q or P**T, as
*          returned by DGEBRD in its array argument TAUQ or TAUP.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*          For optimum performance LWORK >= min(M,N)*NB, where NB
*          is the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, WANTQ
      INTEGER            I, IINFO, J, LWKOPT, MN, NB
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DORGLQ, DORGQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      WANTQ = LSAME( VECT, 'Q' )
      MN = MIN( M, N )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
     $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
     $         MIN( N, K ) ) ) ) THEN
         INFO = -3
      ELSE IF( K.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
         INFO = -9
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( WANTQ ) THEN
            NB = ILAENV( 1, 'DORGQR', ' ', M, N, K, -1 )
         ELSE
            NB = ILAENV( 1, 'DORGLQ', ' ', M, N, K, -1 )
         END IF
         LWKOPT = MAX( 1, MN )*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORGBR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( WANTQ ) THEN
*
*        Form Q, determined by a call to DGEBRD to reduce an m-by-k
*        matrix
*
         IF( M.GE.K ) THEN
*
*           If m >= k, assume m >= n >= k
*
            CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*           If m < k, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           column to the right, and set the first row and column of Q
*           to those of the unit matrix
*
            DO 20 J = M, 2, -1
               A( 1, J ) = ZERO
               DO 10 I = J + 1, M
                  A( I, J ) = A( I, J-1 )
   10          CONTINUE
   20       CONTINUE
            A( 1, 1 ) = ONE
            DO 30 I = 2, M
               A( I, 1 ) = ZERO
   30       CONTINUE
            IF( M.GT.1 ) THEN
*
*              Form Q(2:m,2:m)
*
               CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
     $                      LWORK, IINFO )
            END IF
         END IF
      ELSE
*
*        Form P', determined by a call to DGEBRD to reduce a k-by-n
*        matrix
*
         IF( K.LT.N ) THEN
*
*           If k < n, assume k <= m <= n
*
            CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*           If k >= n, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           row downward, and set the first row and column of P' to
*           those of the unit matrix
*
            A( 1, 1 ) = ONE
            DO 40 I = 2, N
               A( I, 1 ) = ZERO
   40       CONTINUE
            DO 60 J = 2, N
               DO 50 I = J - 1, 2, -1
                  A( I, J ) = A( I-1, J )
   50          CONTINUE
               A( 1, J ) = ZERO
   60       CONTINUE
            IF( N.GT.1 ) THEN
*
*              Form P'(2:n,2:n)
*
               CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
     $                      LWORK, IINFO )
            END IF
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of DORGBR
*
      END