1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
SUBROUTINE DLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER SIDE
INTEGER INCV, LDC, M, N
DOUBLE PRECISION TAU
* ..
* .. Array Arguments ..
DOUBLE PRECISION C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* This routine is deprecated and has been replaced by routine DORMRZ.
*
* DLATZM applies a Householder matrix generated by DTZRQF to a matrix.
*
* Let P = I - tau*u*u', u = ( 1 ),
* ( v )
* where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
* SIDE = 'R'.
*
* If SIDE equals 'L', let
* C = [ C1 ] 1
* [ C2 ] m-1
* n
* Then C is overwritten by P*C.
*
* If SIDE equals 'R', let
* C = [ C1, C2 ] m
* 1 n-1
* Then C is overwritten by C*P.
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* = 'L': form P * C
* = 'R': form C * P
*
* M (input) INTEGER
* The number of rows of the matrix C.
*
* N (input) INTEGER
* The number of columns of the matrix C.
*
* V (input) DOUBLE PRECISION array, dimension
* (1 + (M-1)*abs(INCV)) if SIDE = 'L'
* (1 + (N-1)*abs(INCV)) if SIDE = 'R'
* The vector v in the representation of P. V is not used
* if TAU = 0.
*
* INCV (input) INTEGER
* The increment between elements of v. INCV <> 0
*
* TAU (input) DOUBLE PRECISION
* The value tau in the representation of P.
*
* C1 (input/output) DOUBLE PRECISION array, dimension
* (LDC,N) if SIDE = 'L'
* (M,1) if SIDE = 'R'
* On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
* if SIDE = 'R'.
*
* On exit, the first row of P*C if SIDE = 'L', or the first
* column of C*P if SIDE = 'R'.
*
* C2 (input/output) DOUBLE PRECISION array, dimension
* (LDC, N) if SIDE = 'L'
* (LDC, N-1) if SIDE = 'R'
* On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
* m x (n - 1) matrix C2 if SIDE = 'R'.
*
* On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
* if SIDE = 'R'.
*
* LDC (input) INTEGER
* The leading dimension of the arrays C1 and C2. LDC >= (1,M).
*
* WORK (workspace) DOUBLE PRECISION array, dimension
* (N) if SIDE = 'L'
* (M) if SIDE = 'R'
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMV, DGER
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
IF( ( MIN( M, N ).EQ.0 ) .OR. ( TAU.EQ.ZERO ) )
$ RETURN
*
IF( LSAME( SIDE, 'L' ) ) THEN
*
* w := C1 + v' * C2
*
CALL DCOPY( N, C1, LDC, WORK, 1 )
CALL DGEMV( 'Transpose', M-1, N, ONE, C2, LDC, V, INCV, ONE,
$ WORK, 1 )
*
* [ C1 ] := [ C1 ] - tau* [ 1 ] * w'
* [ C2 ] [ C2 ] [ v ]
*
CALL DAXPY( N, -TAU, WORK, 1, C1, LDC )
CALL DGER( M-1, N, -TAU, V, INCV, WORK, 1, C2, LDC )
*
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
* w := C1 + C2 * v
*
CALL DCOPY( M, C1, 1, WORK, 1 )
CALL DGEMV( 'No transpose', M, N-1, ONE, C2, LDC, V, INCV, ONE,
$ WORK, 1 )
*
* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v']
*
CALL DAXPY( M, -TAU, WORK, 1, C1, 1 )
CALL DGER( M, N-1, -TAU, WORK, 1, V, INCV, C2, LDC )
END IF
*
RETURN
*
* End of DLATZM
*
END
|