summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dlasv2.f
blob: 4a00b25d3af5d8afbeaa3e5ece68c91834b5f0af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
      SUBROUTINE DLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
*     ..
*
*  Purpose
*  =======
*
*  DLASV2 computes the singular value decomposition of a 2-by-2
*  triangular matrix
*     [  F   G  ]
*     [  0   H  ].
*  On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
*  smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
*  right singular vectors for abs(SSMAX), giving the decomposition
*
*     [ CSL  SNL ] [  F   G  ] [ CSR -SNR ]  =  [ SSMAX   0   ]
*     [-SNL  CSL ] [  0   H  ] [ SNR  CSR ]     [  0    SSMIN ].
*
*  Arguments
*  =========
*
*  F       (input) DOUBLE PRECISION
*          The (1,1) element of the 2-by-2 matrix.
*
*  G       (input) DOUBLE PRECISION
*          The (1,2) element of the 2-by-2 matrix.
*
*  H       (input) DOUBLE PRECISION
*          The (2,2) element of the 2-by-2 matrix.
*
*  SSMIN   (output) DOUBLE PRECISION
*          abs(SSMIN) is the smaller singular value.
*
*  SSMAX   (output) DOUBLE PRECISION
*          abs(SSMAX) is the larger singular value.
*
*  SNL     (output) DOUBLE PRECISION
*  CSL     (output) DOUBLE PRECISION
*          The vector (CSL, SNL) is a unit left singular vector for the
*          singular value abs(SSMAX).
*
*  SNR     (output) DOUBLE PRECISION
*  CSR     (output) DOUBLE PRECISION
*          The vector (CSR, SNR) is a unit right singular vector for the
*          singular value abs(SSMAX).
*
*  Further Details
*  ===============
*
*  Any input parameter may be aliased with any output parameter.
*
*  Barring over/underflow and assuming a guard digit in subtraction, all
*  output quantities are correct to within a few units in the last
*  place (ulps).
*
*  In IEEE arithmetic, the code works correctly if one matrix element is
*  infinite.
*
*  Overflow will not occur unless the largest singular value itself
*  overflows or is within a few ulps of overflow. (On machines with
*  partial overflow, like the Cray, overflow may occur if the largest
*  singular value is within a factor of 2 of overflow.)
*
*  Underflow is harmless if underflow is gradual. Otherwise, results
*  may correspond to a matrix modified by perturbations of size near
*  the underflow threshold.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
      DOUBLE PRECISION   HALF
      PARAMETER          ( HALF = 0.5D0 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
      DOUBLE PRECISION   TWO
      PARAMETER          ( TWO = 2.0D0 )
      DOUBLE PRECISION   FOUR
      PARAMETER          ( FOUR = 4.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            GASMAL, SWAP
      INTEGER            PMAX
      DOUBLE PRECISION   A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M,
     $                   MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN, SQRT
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Executable Statements ..
*
      FT = F
      FA = ABS( FT )
      HT = H
      HA = ABS( H )
*
*     PMAX points to the maximum absolute element of matrix
*       PMAX = 1 if F largest in absolute values
*       PMAX = 2 if G largest in absolute values
*       PMAX = 3 if H largest in absolute values
*
      PMAX = 1
      SWAP = ( HA.GT.FA )
      IF( SWAP ) THEN
         PMAX = 3
         TEMP = FT
         FT = HT
         HT = TEMP
         TEMP = FA
         FA = HA
         HA = TEMP
*
*        Now FA .ge. HA
*
      END IF
      GT = G
      GA = ABS( GT )
      IF( GA.EQ.ZERO ) THEN
*
*        Diagonal matrix
*
         SSMIN = HA
         SSMAX = FA
         CLT = ONE
         CRT = ONE
         SLT = ZERO
         SRT = ZERO
      ELSE
         GASMAL = .TRUE.
         IF( GA.GT.FA ) THEN
            PMAX = 2
            IF( ( FA / GA ).LT.DLAMCH( 'EPS' ) ) THEN
*
*              Case of very large GA
*
               GASMAL = .FALSE.
               SSMAX = GA
               IF( HA.GT.ONE ) THEN
                  SSMIN = FA / ( GA / HA )
               ELSE
                  SSMIN = ( FA / GA )*HA
               END IF
               CLT = ONE
               SLT = HT / GT
               SRT = ONE
               CRT = FT / GT
            END IF
         END IF
         IF( GASMAL ) THEN
*
*           Normal case
*
            D = FA - HA
            IF( D.EQ.FA ) THEN
*
*              Copes with infinite F or H
*
               L = ONE
            ELSE
               L = D / FA
            END IF
*
*           Note that 0 .le. L .le. 1
*
            M = GT / FT
*
*           Note that abs(M) .le. 1/macheps
*
            T = TWO - L
*
*           Note that T .ge. 1
*
            MM = M*M
            TT = T*T
            S = SQRT( TT+MM )
*
*           Note that 1 .le. S .le. 1 + 1/macheps
*
            IF( L.EQ.ZERO ) THEN
               R = ABS( M )
            ELSE
               R = SQRT( L*L+MM )
            END IF
*
*           Note that 0 .le. R .le. 1 + 1/macheps
*
            A = HALF*( S+R )
*
*           Note that 1 .le. A .le. 1 + abs(M)
*
            SSMIN = HA / A
            SSMAX = FA*A
            IF( MM.EQ.ZERO ) THEN
*
*              Note that M is very tiny
*
               IF( L.EQ.ZERO ) THEN
                  T = SIGN( TWO, FT )*SIGN( ONE, GT )
               ELSE
                  T = GT / SIGN( D, FT ) + M / T
               END IF
            ELSE
               T = ( M / ( S+T )+M / ( R+L ) )*( ONE+A )
            END IF
            L = SQRT( T*T+FOUR )
            CRT = TWO / L
            SRT = T / L
            CLT = ( CRT+SRT*M ) / A
            SLT = ( HT / FT )*SRT / A
         END IF
      END IF
      IF( SWAP ) THEN
         CSL = SRT
         SNL = CRT
         CSR = SLT
         SNR = CLT
      ELSE
         CSL = CLT
         SNL = SLT
         CSR = CRT
         SNR = SRT
      END IF
*
*     Correct signs of SSMAX and SSMIN
*
      IF( PMAX.EQ.1 )
     $   TSIGN = SIGN( ONE, CSR )*SIGN( ONE, CSL )*SIGN( ONE, F )
      IF( PMAX.EQ.2 )
     $   TSIGN = SIGN( ONE, SNR )*SIGN( ONE, CSL )*SIGN( ONE, G )
      IF( PMAX.EQ.3 )
     $   TSIGN = SIGN( ONE, SNR )*SIGN( ONE, SNL )*SIGN( ONE, H )
      SSMAX = SIGN( SSMAX, TSIGN )
      SSMIN = SIGN( SSMIN, TSIGN*SIGN( ONE, F )*SIGN( ONE, H ) )
      RETURN
*
*     End of DLASV2
*
      END