summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dlarzt.f
blob: d79636e0311892c2ad1cc663b313c2af1b26b7e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
      SUBROUTINE DLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            K, LDT, LDV, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
*     ..
*
*  Purpose
*  =======
*
*  DLARZT forms the triangular factor T of a real block reflector
*  H of order > n, which is defined as a product of k elementary
*  reflectors.
*
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
*  If STOREV = 'C', the vector which defines the elementary reflector
*  H(i) is stored in the i-th column of the array V, and
*
*     H  =  I - V * T * V'
*
*  If STOREV = 'R', the vector which defines the elementary reflector
*  H(i) is stored in the i-th row of the array V, and
*
*     H  =  I - V' * T * V
*
*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
*  Arguments
*  =========
*
*  DIRECT  (input) CHARACTER*1
*          Specifies the order in which the elementary reflectors are
*          multiplied to form the block reflector:
*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Specifies how the vectors which define the elementary
*          reflectors are stored (see also Further Details):
*          = 'C': columnwise                        (not supported yet)
*          = 'R': rowwise
*
*  N       (input) INTEGER
*          The order of the block reflector H. N >= 0.
*
*  K       (input) INTEGER
*          The order of the triangular factor T (= the number of
*          elementary reflectors). K >= 1.
*
*  V       (input/output) DOUBLE PRECISION array, dimension
*                               (LDV,K) if STOREV = 'C'
*                               (LDV,N) if STOREV = 'R'
*          The matrix V. See further details.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i).
*
*  T       (output) DOUBLE PRECISION array, dimension (LDT,K)
*          The k by k triangular factor T of the block reflector.
*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
*          lower triangular. The rest of the array is not used.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*  The shape of the matrix V and the storage of the vectors which define
*  the H(i) is best illustrated by the following example with n = 5 and
*  k = 3. The elements equal to 1 are not stored; the corresponding
*  array elements are modified but restored on exit. The rest of the
*  array is not used.
*
*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
*
*                                              ______V_____
*         ( v1 v2 v3 )                        /            \
*         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
*     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
*         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
*         ( v1 v2 v3 )
*            .  .  .
*            .  .  .
*            1  .  .
*               1  .
*                  1
*
*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
*
*                                                        ______V_____
*            1                                          /            \
*            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
*            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
*            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
*            .  .  .
*         ( v1 v2 v3 )
*         ( v1 v2 v3 )
*     V = ( v1 v2 v3 )
*         ( v1 v2 v3 )
*         ( v1 v2 v3 )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMV, DTRMV, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Check for currently supported options
*
      INFO = 0
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLARZT', -INFO )
         RETURN
      END IF
*
      DO 20 I = K, 1, -1
         IF( TAU( I ).EQ.ZERO ) THEN
*
*           H(i)  =  I
*
            DO 10 J = I, K
               T( J, I ) = ZERO
   10       CONTINUE
         ELSE
*
*           general case
*
            IF( I.LT.K ) THEN
*
*              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)'
*
               CALL DGEMV( 'No transpose', K-I, N, -TAU( I ),
     $                     V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
     $                     T( I+1, I ), 1 )
*
*              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
*
               CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
     $                     T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
            END IF
            T( I, I ) = TAU( I )
         END IF
   20 CONTINUE
      RETURN
*
*     End of DLARZT
*
      END