1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
$ LDV, T, LDT, C, LDC, WORK, LDWORK )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIRECT, SIDE, STOREV, TRANS
INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ),
$ WORK( LDWORK, * )
* ..
*
* Purpose
* =======
*
* DLARZB applies a real block reflector H or its transpose H**T to
* a real distributed M-by-N C from the left or the right.
*
* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* = 'L': apply H or H' from the Left
* = 'R': apply H or H' from the Right
*
* TRANS (input) CHARACTER*1
* = 'N': apply H (No transpose)
* = 'C': apply H' (Transpose)
*
* DIRECT (input) CHARACTER*1
* Indicates how H is formed from a product of elementary
* reflectors
* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
* = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
* STOREV (input) CHARACTER*1
* Indicates how the vectors which define the elementary
* reflectors are stored:
* = 'C': Columnwise (not supported yet)
* = 'R': Rowwise
*
* M (input) INTEGER
* The number of rows of the matrix C.
*
* N (input) INTEGER
* The number of columns of the matrix C.
*
* K (input) INTEGER
* The order of the matrix T (= the number of elementary
* reflectors whose product defines the block reflector).
*
* L (input) INTEGER
* The number of columns of the matrix V containing the
* meaningful part of the Householder reflectors.
* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*
* V (input) DOUBLE PRECISION array, dimension (LDV,NV).
* If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
*
* LDV (input) INTEGER
* The leading dimension of the array V.
* If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
*
* T (input) DOUBLE PRECISION array, dimension (LDT,K)
* The triangular K-by-K matrix T in the representation of the
* block reflector.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= K.
*
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
* On entry, the M-by-N matrix C.
* On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
*
* LDWORK (input) INTEGER
* The leading dimension of the array WORK.
* If SIDE = 'L', LDWORK >= max(1,N);
* if SIDE = 'R', LDWORK >= max(1,M).
*
* Further Details
* ===============
*
* Based on contributions by
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
CHARACTER TRANST
INTEGER I, INFO, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DTRMM, XERBLA
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
* Check for currently supported options
*
INFO = 0
IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLARZB', -INFO )
RETURN
END IF
*
IF( LSAME( TRANS, 'N' ) ) THEN
TRANST = 'T'
ELSE
TRANST = 'N'
END IF
*
IF( LSAME( SIDE, 'L' ) ) THEN
*
* Form H * C or H' * C
*
* W( 1:n, 1:k ) = C( 1:k, 1:n )'
*
DO 10 J = 1, K
CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
10 CONTINUE
*
* W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
* C( m-l+1:m, 1:n )' * V( 1:k, 1:l )'
*
IF( L.GT.0 )
$ CALL DGEMM( 'Transpose', 'Transpose', N, K, L, ONE,
$ C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK, LDWORK )
*
* W( 1:n, 1:k ) = W( 1:n, 1:k ) * T' or W( 1:m, 1:k ) * T
*
CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
$ LDT, WORK, LDWORK )
*
* C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )'
*
DO 30 J = 1, N
DO 20 I = 1, K
C( I, J ) = C( I, J ) - WORK( J, I )
20 CONTINUE
30 CONTINUE
*
* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
* V( 1:k, 1:l )' * W( 1:n, 1:k )'
*
IF( L.GT.0 )
$ CALL DGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
$ WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
*
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
* Form C * H or C * H'
*
* W( 1:m, 1:k ) = C( 1:m, 1:k )
*
DO 40 J = 1, K
CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
40 CONTINUE
*
* W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
* C( 1:m, n-l+1:n ) * V( 1:k, 1:l )'
*
IF( L.GT.0 )
$ CALL DGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
$ C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
*
* W( 1:m, 1:k ) = W( 1:m, 1:k ) * T or W( 1:m, 1:k ) * T'
*
CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
$ LDT, WORK, LDWORK )
*
* C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
*
DO 60 J = 1, K
DO 50 I = 1, M
C( I, J ) = C( I, J ) - WORK( I, J )
50 CONTINUE
60 CONTINUE
*
* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
* W( 1:m, 1:k ) * V( 1:k, 1:l )
*
IF( L.GT.0 )
$ CALL DGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
$ WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
*
END IF
*
RETURN
*
* End of DLARZB
*
END
|