summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dlahrd.f
blob: a04133d185c72abaf543f4b1fd18c5de4caee29b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
      SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LDT, LDY, N, NB
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), T( LDT, NB ), TAU( NB ),
     $                   Y( LDY, NB )
*     ..
*
*  Purpose
*  =======
*
*  DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
*  matrix A so that elements below the k-th subdiagonal are zero. The
*  reduction is performed by an orthogonal similarity transformation
*  Q' * A * Q. The routine returns the matrices V and T which determine
*  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
*
*  This is an OBSOLETE auxiliary routine. 
*  This routine will be 'deprecated' in a  future release.
*  Please use the new routine DLAHR2 instead.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  K       (input) INTEGER
*          The offset for the reduction. Elements below the k-th
*          subdiagonal in the first NB columns are reduced to zero.
*
*  NB      (input) INTEGER
*          The number of columns to be reduced.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
*          On entry, the n-by-(n-k+1) general matrix A.
*          On exit, the elements on and above the k-th subdiagonal in
*          the first NB columns are overwritten with the corresponding
*          elements of the reduced matrix; the elements below the k-th
*          subdiagonal, with the array TAU, represent the matrix Q as a
*          product of elementary reflectors. The other columns of A are
*          unchanged. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  TAU     (output) DOUBLE PRECISION array, dimension (NB)
*          The scalar factors of the elementary reflectors. See Further
*          Details.
*
*  T       (output) DOUBLE PRECISION array, dimension (LDT,NB)
*          The upper triangular matrix T.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T.  LDT >= NB.
*
*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
*          The n-by-nb matrix Y.
*
*  LDY     (input) INTEGER
*          The leading dimension of the array Y. LDY >= N.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of nb elementary reflectors
*
*     Q = H(1) H(2) . . . H(nb).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
*  A(i+k+1:n,i), and tau in TAU(i).
*
*  The elements of the vectors v together form the (n-k+1)-by-nb matrix
*  V which is needed, with T and Y, to apply the transformation to the
*  unreduced part of the matrix, using an update of the form:
*  A := (I - V*T*V') * (A - Y*V').
*
*  The contents of A on exit are illustrated by the following example
*  with n = 7, k = 3 and nb = 2:
*
*     ( a   h   a   a   a )
*     ( a   h   a   a   a )
*     ( a   h   a   a   a )
*     ( h   h   a   a   a )
*     ( v1  h   a   a   a )
*     ( v1  v2  a   a   a )
*     ( v1  v2  a   a   a )
*
*  where a denotes an element of the original matrix A, h denotes a
*  modified element of the upper Hessenberg matrix H, and vi denotes an
*  element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   EI
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEMV, DLARFG, DSCAL, DTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.1 )
     $   RETURN
*
      DO 10 I = 1, NB
         IF( I.GT.1 ) THEN
*
*           Update A(1:n,i)
*
*           Compute i-th column of A - Y * V'
*
            CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
     $                  A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
*
*           Apply I - V * T' * V' to this column (call it b) from the
*           left, using the last column of T as workspace
*
*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
*                    ( V2 )             ( b2 )
*
*           where V1 is unit lower triangular
*
*           w := V1' * b1
*
            CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
            CALL DTRMV( 'Lower', 'Transpose', 'Unit', I-1, A( K+1, 1 ),
     $                  LDA, T( 1, NB ), 1 )
*
*           w := w + V2'*b2
*
            CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
     $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
*
*           w := T'*w
*
            CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', I-1, T, LDT,
     $                  T( 1, NB ), 1 )
*
*           b2 := b2 - V2*w
*
            CALL DGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
     $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
*
*           b1 := b1 - V1*w
*
            CALL DTRMV( 'Lower', 'No transpose', 'Unit', I-1,
     $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
            CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
*
            A( K+I-1, I-1 ) = EI
         END IF
*
*        Generate the elementary reflector H(i) to annihilate
*        A(k+i+1:n,i)
*
         CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
     $                TAU( I ) )
         EI = A( K+I, I )
         A( K+I, I ) = ONE
*
*        Compute  Y(1:n,i)
*
         CALL DGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
     $               A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
         CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
     $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
         CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
     $               ONE, Y( 1, I ), 1 )
         CALL DSCAL( N, TAU( I ), Y( 1, I ), 1 )
*
*        Compute T(1:i,i)
*
         CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
     $               T( 1, I ), 1 )
         T( I, I ) = TAU( I )
*
   10 CONTINUE
      A( K+NB, NB ) = EI
*
      RETURN
*
*     End of DLAHRD
*
      END