1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
|
SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
$ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
$ LWORK, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER COMPQ, COMPZ, JOB
INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION ALPHAI( * ), ALPHAR( * ), BETA( * ),
$ H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
$ WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DHGEQZ computes the eigenvalues of a real matrix pair (H,T),
* where H is an upper Hessenberg matrix and T is upper triangular,
* using the double-shift QZ method.
* Matrix pairs of this type are produced by the reduction to
* generalized upper Hessenberg form of a real matrix pair (A,B):
*
* A = Q1*H*Z1**T, B = Q1*T*Z1**T,
*
* as computed by DGGHRD.
*
* If JOB='S', then the Hessenberg-triangular pair (H,T) is
* also reduced to generalized Schur form,
*
* H = Q*S*Z**T, T = Q*P*Z**T,
*
* where Q and Z are orthogonal matrices, P is an upper triangular
* matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
* diagonal blocks.
*
* The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
* (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
* eigenvalues.
*
* Additionally, the 2-by-2 upper triangular diagonal blocks of P
* corresponding to 2-by-2 blocks of S are reduced to positive diagonal
* form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
* P(j,j) > 0, and P(j+1,j+1) > 0.
*
* Optionally, the orthogonal matrix Q from the generalized Schur
* factorization may be postmultiplied into an input matrix Q1, and the
* orthogonal matrix Z may be postmultiplied into an input matrix Z1.
* If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced
* the matrix pair (A,B) to generalized upper Hessenberg form, then the
* output matrices Q1*Q and Z1*Z are the orthogonal factors from the
* generalized Schur factorization of (A,B):
*
* A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T.
*
* To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
* of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
* complex and beta real.
* If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
* generalized nonsymmetric eigenvalue problem (GNEP)
* A*x = lambda*B*x
* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
* alternate form of the GNEP
* mu*A*y = B*y.
* Real eigenvalues can be read directly from the generalized Schur
* form:
* alpha = S(i,i), beta = P(i,i).
*
* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
* pp. 241--256.
*
* Arguments
* =========
*
* JOB (input) CHARACTER*1
* = 'E': Compute eigenvalues only;
* = 'S': Compute eigenvalues and the Schur form.
*
* COMPQ (input) CHARACTER*1
* = 'N': Left Schur vectors (Q) are not computed;
* = 'I': Q is initialized to the unit matrix and the matrix Q
* of left Schur vectors of (H,T) is returned;
* = 'V': Q must contain an orthogonal matrix Q1 on entry and
* the product Q1*Q is returned.
*
* COMPZ (input) CHARACTER*1
* = 'N': Right Schur vectors (Z) are not computed;
* = 'I': Z is initialized to the unit matrix and the matrix Z
* of right Schur vectors of (H,T) is returned;
* = 'V': Z must contain an orthogonal matrix Z1 on entry and
* the product Z1*Z is returned.
*
* N (input) INTEGER
* The order of the matrices H, T, Q, and Z. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* ILO and IHI mark the rows and columns of H which are in
* Hessenberg form. It is assumed that A is already upper
* triangular in rows and columns 1:ILO-1 and IHI+1:N.
* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
*
* H (input/output) DOUBLE PRECISION array, dimension (LDH, N)
* On entry, the N-by-N upper Hessenberg matrix H.
* On exit, if JOB = 'S', H contains the upper quasi-triangular
* matrix S from the generalized Schur factorization;
* 2-by-2 diagonal blocks (corresponding to complex conjugate
* pairs of eigenvalues) are returned in standard form, with
* H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0.
* If JOB = 'E', the diagonal blocks of H match those of S, but
* the rest of H is unspecified.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH >= max( 1, N ).
*
* T (input/output) DOUBLE PRECISION array, dimension (LDT, N)
* On entry, the N-by-N upper triangular matrix T.
* On exit, if JOB = 'S', T contains the upper triangular
* matrix P from the generalized Schur factorization;
* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S
* are reduced to positive diagonal form, i.e., if H(j+1,j) is
* non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
* T(j+1,j+1) > 0.
* If JOB = 'E', the diagonal blocks of T match those of P, but
* the rest of T is unspecified.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= max( 1, N ).
*
* ALPHAR (output) DOUBLE PRECISION array, dimension (N)
* The real parts of each scalar alpha defining an eigenvalue
* of GNEP.
*
* ALPHAI (output) DOUBLE PRECISION array, dimension (N)
* The imaginary parts of each scalar alpha defining an
* eigenvalue of GNEP.
* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
* positive, then the j-th and (j+1)-st eigenvalues are a
* complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
*
* BETA (output) DOUBLE PRECISION array, dimension (N)
* The scalars beta that define the eigenvalues of GNEP.
* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
* beta = BETA(j) represent the j-th eigenvalue of the matrix
* pair (A,B), in one of the forms lambda = alpha/beta or
* mu = beta/alpha. Since either lambda or mu may overflow,
* they should not, in general, be computed.
*
* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
* On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in
* the reduction of (A,B) to generalized Hessenberg form.
* On exit, if COMPZ = 'I', the orthogonal matrix of left Schur
* vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix
* of left Schur vectors of (A,B).
* Not referenced if COMPZ = 'N'.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= 1.
* If COMPQ='V' or 'I', then LDQ >= N.
*
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
* On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
* the reduction of (A,B) to generalized Hessenberg form.
* On exit, if COMPZ = 'I', the orthogonal matrix of
* right Schur vectors of (H,T), and if COMPZ = 'V', the
* orthogonal matrix of right Schur vectors of (A,B).
* Not referenced if COMPZ = 'N'.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1.
* If COMPZ='V' or 'I', then LDZ >= N.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* = 1,...,N: the QZ iteration did not converge. (H,T) is not
* in Schur form, but ALPHAR(i), ALPHAI(i), and
* BETA(i), i=INFO+1,...,N should be correct.
* = N+1,...,2*N: the shift calculation failed. (H,T) is not
* in Schur form, but ALPHAR(i), ALPHAI(i), and
* BETA(i), i=INFO-N+1,...,N should be correct.
*
* Further Details
* ===============
*
* Iteration counters:
*
* JITER -- counts iterations.
* IITER -- counts iterations run since ILAST was last
* changed. This is therefore reset only when a 1-by-1 or
* 2-by-2 block deflates off the bottom.
*
* =====================================================================
*
* .. Parameters ..
* $ SAFETY = 1.0E+0 )
DOUBLE PRECISION HALF, ZERO, ONE, SAFETY
PARAMETER ( HALF = 0.5D+0, ZERO = 0.0D+0, ONE = 1.0D+0,
$ SAFETY = 1.0D+2 )
* ..
* .. Local Scalars ..
LOGICAL ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ,
$ LQUERY
INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
$ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
$ JR, MAXIT
DOUBLE PRECISION A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11,
$ AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L,
$ AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I,
$ B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE,
$ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,
$ CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX,
$ SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1,
$ TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L,
$ U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR,
$ WR2
* ..
* .. Local Arrays ..
DOUBLE PRECISION V( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANHS, DLAPY2, DLAPY3
EXTERNAL LSAME, DLAMCH, DLANHS, DLAPY2, DLAPY3
* ..
* .. External Subroutines ..
EXTERNAL DLAG2, DLARFG, DLARTG, DLASET, DLASV2, DROT,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Decode JOB, COMPQ, COMPZ
*
IF( LSAME( JOB, 'E' ) ) THEN
ILSCHR = .FALSE.
ISCHUR = 1
ELSE IF( LSAME( JOB, 'S' ) ) THEN
ILSCHR = .TRUE.
ISCHUR = 2
ELSE
ISCHUR = 0
END IF
*
IF( LSAME( COMPQ, 'N' ) ) THEN
ILQ = .FALSE.
ICOMPQ = 1
ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
ILQ = .TRUE.
ICOMPQ = 2
ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
ILQ = .TRUE.
ICOMPQ = 3
ELSE
ICOMPQ = 0
END IF
*
IF( LSAME( COMPZ, 'N' ) ) THEN
ILZ = .FALSE.
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ILZ = .TRUE.
ICOMPZ = 2
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
ILZ = .TRUE.
ICOMPZ = 3
ELSE
ICOMPZ = 0
END IF
*
* Check Argument Values
*
INFO = 0
WORK( 1 ) = MAX( 1, N )
LQUERY = ( LWORK.EQ.-1 )
IF( ISCHUR.EQ.0 ) THEN
INFO = -1
ELSE IF( ICOMPQ.EQ.0 ) THEN
INFO = -2
ELSE IF( ICOMPZ.EQ.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( ILO.LT.1 ) THEN
INFO = -5
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
INFO = -6
ELSE IF( LDH.LT.N ) THEN
INFO = -8
ELSE IF( LDT.LT.N ) THEN
INFO = -10
ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
INFO = -15
ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
INFO = -17
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -19
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DHGEQZ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
WORK( 1 ) = DBLE( 1 )
RETURN
END IF
*
* Initialize Q and Z
*
IF( ICOMPQ.EQ.3 )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
IF( ICOMPZ.EQ.3 )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
* Machine Constants
*
IN = IHI + 1 - ILO
SAFMIN = DLAMCH( 'S' )
SAFMAX = ONE / SAFMIN
ULP = DLAMCH( 'E' )*DLAMCH( 'B' )
ANORM = DLANHS( 'F', IN, H( ILO, ILO ), LDH, WORK )
BNORM = DLANHS( 'F', IN, T( ILO, ILO ), LDT, WORK )
ATOL = MAX( SAFMIN, ULP*ANORM )
BTOL = MAX( SAFMIN, ULP*BNORM )
ASCALE = ONE / MAX( SAFMIN, ANORM )
BSCALE = ONE / MAX( SAFMIN, BNORM )
*
* Set Eigenvalues IHI+1:N
*
DO 30 J = IHI + 1, N
IF( T( J, J ).LT.ZERO ) THEN
IF( ILSCHR ) THEN
DO 10 JR = 1, J
H( JR, J ) = -H( JR, J )
T( JR, J ) = -T( JR, J )
10 CONTINUE
ELSE
H( J, J ) = -H( J, J )
T( J, J ) = -T( J, J )
END IF
IF( ILZ ) THEN
DO 20 JR = 1, N
Z( JR, J ) = -Z( JR, J )
20 CONTINUE
END IF
END IF
ALPHAR( J ) = H( J, J )
ALPHAI( J ) = ZERO
BETA( J ) = T( J, J )
30 CONTINUE
*
* If IHI < ILO, skip QZ steps
*
IF( IHI.LT.ILO )
$ GO TO 380
*
* MAIN QZ ITERATION LOOP
*
* Initialize dynamic indices
*
* Eigenvalues ILAST+1:N have been found.
* Column operations modify rows IFRSTM:whatever.
* Row operations modify columns whatever:ILASTM.
*
* If only eigenvalues are being computed, then
* IFRSTM is the row of the last splitting row above row ILAST;
* this is always at least ILO.
* IITER counts iterations since the last eigenvalue was found,
* to tell when to use an extraordinary shift.
* MAXIT is the maximum number of QZ sweeps allowed.
*
ILAST = IHI
IF( ILSCHR ) THEN
IFRSTM = 1
ILASTM = N
ELSE
IFRSTM = ILO
ILASTM = IHI
END IF
IITER = 0
ESHIFT = ZERO
MAXIT = 30*( IHI-ILO+1 )
*
DO 360 JITER = 1, MAXIT
*
* Split the matrix if possible.
*
* Two tests:
* 1: H(j,j-1)=0 or j=ILO
* 2: T(j,j)=0
*
IF( ILAST.EQ.ILO ) THEN
*
* Special case: j=ILAST
*
GO TO 80
ELSE
IF( ABS( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN
H( ILAST, ILAST-1 ) = ZERO
GO TO 80
END IF
END IF
*
IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
T( ILAST, ILAST ) = ZERO
GO TO 70
END IF
*
* General case: j<ILAST
*
DO 60 J = ILAST - 1, ILO, -1
*
* Test 1: for H(j,j-1)=0 or j=ILO
*
IF( J.EQ.ILO ) THEN
ILAZRO = .TRUE.
ELSE
IF( ABS( H( J, J-1 ) ).LE.ATOL ) THEN
H( J, J-1 ) = ZERO
ILAZRO = .TRUE.
ELSE
ILAZRO = .FALSE.
END IF
END IF
*
* Test 2: for T(j,j)=0
*
IF( ABS( T( J, J ) ).LT.BTOL ) THEN
T( J, J ) = ZERO
*
* Test 1a: Check for 2 consecutive small subdiagonals in A
*
ILAZR2 = .FALSE.
IF( .NOT.ILAZRO ) THEN
TEMP = ABS( H( J, J-1 ) )
TEMP2 = ABS( H( J, J ) )
TEMPR = MAX( TEMP, TEMP2 )
IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
TEMP = TEMP / TEMPR
TEMP2 = TEMP2 / TEMPR
END IF
IF( TEMP*( ASCALE*ABS( H( J+1, J ) ) ).LE.TEMP2*
$ ( ASCALE*ATOL ) )ILAZR2 = .TRUE.
END IF
*
* If both tests pass (1 & 2), i.e., the leading diagonal
* element of B in the block is zero, split a 1x1 block off
* at the top. (I.e., at the J-th row/column) The leading
* diagonal element of the remainder can also be zero, so
* this may have to be done repeatedly.
*
IF( ILAZRO .OR. ILAZR2 ) THEN
DO 40 JCH = J, ILAST - 1
TEMP = H( JCH, JCH )
CALL DLARTG( TEMP, H( JCH+1, JCH ), C, S,
$ H( JCH, JCH ) )
H( JCH+1, JCH ) = ZERO
CALL DROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
$ H( JCH+1, JCH+1 ), LDH, C, S )
CALL DROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
$ T( JCH+1, JCH+1 ), LDT, C, S )
IF( ILQ )
$ CALL DROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
$ C, S )
IF( ILAZR2 )
$ H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
ILAZR2 = .FALSE.
IF( ABS( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
IF( JCH+1.GE.ILAST ) THEN
GO TO 80
ELSE
IFIRST = JCH + 1
GO TO 110
END IF
END IF
T( JCH+1, JCH+1 ) = ZERO
40 CONTINUE
GO TO 70
ELSE
*
* Only test 2 passed -- chase the zero to T(ILAST,ILAST)
* Then process as in the case T(ILAST,ILAST)=0
*
DO 50 JCH = J, ILAST - 1
TEMP = T( JCH, JCH+1 )
CALL DLARTG( TEMP, T( JCH+1, JCH+1 ), C, S,
$ T( JCH, JCH+1 ) )
T( JCH+1, JCH+1 ) = ZERO
IF( JCH.LT.ILASTM-1 )
$ CALL DROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
$ T( JCH+1, JCH+2 ), LDT, C, S )
CALL DROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
$ H( JCH+1, JCH-1 ), LDH, C, S )
IF( ILQ )
$ CALL DROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
$ C, S )
TEMP = H( JCH+1, JCH )
CALL DLARTG( TEMP, H( JCH+1, JCH-1 ), C, S,
$ H( JCH+1, JCH ) )
H( JCH+1, JCH-1 ) = ZERO
CALL DROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
$ H( IFRSTM, JCH-1 ), 1, C, S )
CALL DROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
$ T( IFRSTM, JCH-1 ), 1, C, S )
IF( ILZ )
$ CALL DROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
$ C, S )
50 CONTINUE
GO TO 70
END IF
ELSE IF( ILAZRO ) THEN
*
* Only test 1 passed -- work on J:ILAST
*
IFIRST = J
GO TO 110
END IF
*
* Neither test passed -- try next J
*
60 CONTINUE
*
* (Drop-through is "impossible")
*
INFO = N + 1
GO TO 420
*
* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
* 1x1 block.
*
70 CONTINUE
TEMP = H( ILAST, ILAST )
CALL DLARTG( TEMP, H( ILAST, ILAST-1 ), C, S,
$ H( ILAST, ILAST ) )
H( ILAST, ILAST-1 ) = ZERO
CALL DROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
$ H( IFRSTM, ILAST-1 ), 1, C, S )
CALL DROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
$ T( IFRSTM, ILAST-1 ), 1, C, S )
IF( ILZ )
$ CALL DROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
*
* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI,
* and BETA
*
80 CONTINUE
IF( T( ILAST, ILAST ).LT.ZERO ) THEN
IF( ILSCHR ) THEN
DO 90 J = IFRSTM, ILAST
H( J, ILAST ) = -H( J, ILAST )
T( J, ILAST ) = -T( J, ILAST )
90 CONTINUE
ELSE
H( ILAST, ILAST ) = -H( ILAST, ILAST )
T( ILAST, ILAST ) = -T( ILAST, ILAST )
END IF
IF( ILZ ) THEN
DO 100 J = 1, N
Z( J, ILAST ) = -Z( J, ILAST )
100 CONTINUE
END IF
END IF
ALPHAR( ILAST ) = H( ILAST, ILAST )
ALPHAI( ILAST ) = ZERO
BETA( ILAST ) = T( ILAST, ILAST )
*
* Go to next block -- exit if finished.
*
ILAST = ILAST - 1
IF( ILAST.LT.ILO )
$ GO TO 380
*
* Reset counters
*
IITER = 0
ESHIFT = ZERO
IF( .NOT.ILSCHR ) THEN
ILASTM = ILAST
IF( IFRSTM.GT.ILAST )
$ IFRSTM = ILO
END IF
GO TO 350
*
* QZ step
*
* This iteration only involves rows/columns IFIRST:ILAST. We
* assume IFIRST < ILAST, and that the diagonal of B is non-zero.
*
110 CONTINUE
IITER = IITER + 1
IF( .NOT.ILSCHR ) THEN
IFRSTM = IFIRST
END IF
*
* Compute single shifts.
*
* At this point, IFIRST < ILAST, and the diagonal elements of
* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
* magnitude)
*
IF( ( IITER / 10 )*10.EQ.IITER ) THEN
*
* Exceptional shift. Chosen for no particularly good reason.
* (Single shift only.)
*
IF( ( DBLE( MAXIT )*SAFMIN )*ABS( H( ILAST-1, ILAST ) ).LT.
$ ABS( T( ILAST-1, ILAST-1 ) ) ) THEN
ESHIFT = ESHIFT + H( ILAST-1, ILAST ) /
$ T( ILAST-1, ILAST-1 )
ELSE
ESHIFT = ESHIFT + ONE / ( SAFMIN*DBLE( MAXIT ) )
END IF
S1 = ONE
WR = ESHIFT
*
ELSE
*
* Shifts based on the generalized eigenvalues of the
* bottom-right 2x2 block of A and B. The first eigenvalue
* returned by DLAG2 is the Wilkinson shift (AEP p.512),
*
CALL DLAG2( H( ILAST-1, ILAST-1 ), LDH,
$ T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
$ S2, WR, WR2, WI )
*
TEMP = MAX( S1, SAFMIN*MAX( ONE, ABS( WR ), ABS( WI ) ) )
IF( WI.NE.ZERO )
$ GO TO 200
END IF
*
* Fiddle with shift to avoid overflow
*
TEMP = MIN( ASCALE, ONE )*( HALF*SAFMAX )
IF( S1.GT.TEMP ) THEN
SCALE = TEMP / S1
ELSE
SCALE = ONE
END IF
*
TEMP = MIN( BSCALE, ONE )*( HALF*SAFMAX )
IF( ABS( WR ).GT.TEMP )
$ SCALE = MIN( SCALE, TEMP / ABS( WR ) )
S1 = SCALE*S1
WR = SCALE*WR
*
* Now check for two consecutive small subdiagonals.
*
DO 120 J = ILAST - 1, IFIRST + 1, -1
ISTART = J
TEMP = ABS( S1*H( J, J-1 ) )
TEMP2 = ABS( S1*H( J, J )-WR*T( J, J ) )
TEMPR = MAX( TEMP, TEMP2 )
IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
TEMP = TEMP / TEMPR
TEMP2 = TEMP2 / TEMPR
END IF
IF( ABS( ( ASCALE*H( J+1, J ) )*TEMP ).LE.( ASCALE*ATOL )*
$ TEMP2 )GO TO 130
120 CONTINUE
*
ISTART = IFIRST
130 CONTINUE
*
* Do an implicit single-shift QZ sweep.
*
* Initial Q
*
TEMP = S1*H( ISTART, ISTART ) - WR*T( ISTART, ISTART )
TEMP2 = S1*H( ISTART+1, ISTART )
CALL DLARTG( TEMP, TEMP2, C, S, TEMPR )
*
* Sweep
*
DO 190 J = ISTART, ILAST - 1
IF( J.GT.ISTART ) THEN
TEMP = H( J, J-1 )
CALL DLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
H( J+1, J-1 ) = ZERO
END IF
*
DO 140 JC = J, ILASTM
TEMP = C*H( J, JC ) + S*H( J+1, JC )
H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
H( J, JC ) = TEMP
TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
T( J, JC ) = TEMP2
140 CONTINUE
IF( ILQ ) THEN
DO 150 JR = 1, N
TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
Q( JR, J ) = TEMP
150 CONTINUE
END IF
*
TEMP = T( J+1, J+1 )
CALL DLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
T( J+1, J ) = ZERO
*
DO 160 JR = IFRSTM, MIN( J+2, ILAST )
TEMP = C*H( JR, J+1 ) + S*H( JR, J )
H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
H( JR, J+1 ) = TEMP
160 CONTINUE
DO 170 JR = IFRSTM, J
TEMP = C*T( JR, J+1 ) + S*T( JR, J )
T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
T( JR, J+1 ) = TEMP
170 CONTINUE
IF( ILZ ) THEN
DO 180 JR = 1, N
TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
Z( JR, J+1 ) = TEMP
180 CONTINUE
END IF
190 CONTINUE
*
GO TO 350
*
* Use Francis double-shift
*
* Note: the Francis double-shift should work with real shifts,
* but only if the block is at least 3x3.
* This code may break if this point is reached with
* a 2x2 block with real eigenvalues.
*
200 CONTINUE
IF( IFIRST+1.EQ.ILAST ) THEN
*
* Special case -- 2x2 block with complex eigenvectors
*
* Step 1: Standardize, that is, rotate so that
*
* ( B11 0 )
* B = ( ) with B11 non-negative.
* ( 0 B22 )
*
CALL DLASV2( T( ILAST-1, ILAST-1 ), T( ILAST-1, ILAST ),
$ T( ILAST, ILAST ), B22, B11, SR, CR, SL, CL )
*
IF( B11.LT.ZERO ) THEN
CR = -CR
SR = -SR
B11 = -B11
B22 = -B22
END IF
*
CALL DROT( ILASTM+1-IFIRST, H( ILAST-1, ILAST-1 ), LDH,
$ H( ILAST, ILAST-1 ), LDH, CL, SL )
CALL DROT( ILAST+1-IFRSTM, H( IFRSTM, ILAST-1 ), 1,
$ H( IFRSTM, ILAST ), 1, CR, SR )
*
IF( ILAST.LT.ILASTM )
$ CALL DROT( ILASTM-ILAST, T( ILAST-1, ILAST+1 ), LDT,
$ T( ILAST, ILAST+1 ), LDH, CL, SL )
IF( IFRSTM.LT.ILAST-1 )
$ CALL DROT( IFIRST-IFRSTM, T( IFRSTM, ILAST-1 ), 1,
$ T( IFRSTM, ILAST ), 1, CR, SR )
*
IF( ILQ )
$ CALL DROT( N, Q( 1, ILAST-1 ), 1, Q( 1, ILAST ), 1, CL,
$ SL )
IF( ILZ )
$ CALL DROT( N, Z( 1, ILAST-1 ), 1, Z( 1, ILAST ), 1, CR,
$ SR )
*
T( ILAST-1, ILAST-1 ) = B11
T( ILAST-1, ILAST ) = ZERO
T( ILAST, ILAST-1 ) = ZERO
T( ILAST, ILAST ) = B22
*
* If B22 is negative, negate column ILAST
*
IF( B22.LT.ZERO ) THEN
DO 210 J = IFRSTM, ILAST
H( J, ILAST ) = -H( J, ILAST )
T( J, ILAST ) = -T( J, ILAST )
210 CONTINUE
*
IF( ILZ ) THEN
DO 220 J = 1, N
Z( J, ILAST ) = -Z( J, ILAST )
220 CONTINUE
END IF
END IF
*
* Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.)
*
* Recompute shift
*
CALL DLAG2( H( ILAST-1, ILAST-1 ), LDH,
$ T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
$ TEMP, WR, TEMP2, WI )
*
* If standardization has perturbed the shift onto real line,
* do another (real single-shift) QR step.
*
IF( WI.EQ.ZERO )
$ GO TO 350
S1INV = ONE / S1
*
* Do EISPACK (QZVAL) computation of alpha and beta
*
A11 = H( ILAST-1, ILAST-1 )
A21 = H( ILAST, ILAST-1 )
A12 = H( ILAST-1, ILAST )
A22 = H( ILAST, ILAST )
*
* Compute complex Givens rotation on right
* (Assume some element of C = (sA - wB) > unfl )
* __
* (sA - wB) ( CZ -SZ )
* ( SZ CZ )
*
C11R = S1*A11 - WR*B11
C11I = -WI*B11
C12 = S1*A12
C21 = S1*A21
C22R = S1*A22 - WR*B22
C22I = -WI*B22
*
IF( ABS( C11R )+ABS( C11I )+ABS( C12 ).GT.ABS( C21 )+
$ ABS( C22R )+ABS( C22I ) ) THEN
T1 = DLAPY3( C12, C11R, C11I )
CZ = C12 / T1
SZR = -C11R / T1
SZI = -C11I / T1
ELSE
CZ = DLAPY2( C22R, C22I )
IF( CZ.LE.SAFMIN ) THEN
CZ = ZERO
SZR = ONE
SZI = ZERO
ELSE
TEMPR = C22R / CZ
TEMPI = C22I / CZ
T1 = DLAPY2( CZ, C21 )
CZ = CZ / T1
SZR = -C21*TEMPR / T1
SZI = C21*TEMPI / T1
END IF
END IF
*
* Compute Givens rotation on left
*
* ( CQ SQ )
* ( __ ) A or B
* ( -SQ CQ )
*
AN = ABS( A11 ) + ABS( A12 ) + ABS( A21 ) + ABS( A22 )
BN = ABS( B11 ) + ABS( B22 )
WABS = ABS( WR ) + ABS( WI )
IF( S1*AN.GT.WABS*BN ) THEN
CQ = CZ*B11
SQR = SZR*B22
SQI = -SZI*B22
ELSE
A1R = CZ*A11 + SZR*A12
A1I = SZI*A12
A2R = CZ*A21 + SZR*A22
A2I = SZI*A22
CQ = DLAPY2( A1R, A1I )
IF( CQ.LE.SAFMIN ) THEN
CQ = ZERO
SQR = ONE
SQI = ZERO
ELSE
TEMPR = A1R / CQ
TEMPI = A1I / CQ
SQR = TEMPR*A2R + TEMPI*A2I
SQI = TEMPI*A2R - TEMPR*A2I
END IF
END IF
T1 = DLAPY3( CQ, SQR, SQI )
CQ = CQ / T1
SQR = SQR / T1
SQI = SQI / T1
*
* Compute diagonal elements of QBZ
*
TEMPR = SQR*SZR - SQI*SZI
TEMPI = SQR*SZI + SQI*SZR
B1R = CQ*CZ*B11 + TEMPR*B22
B1I = TEMPI*B22
B1A = DLAPY2( B1R, B1I )
B2R = CQ*CZ*B22 + TEMPR*B11
B2I = -TEMPI*B11
B2A = DLAPY2( B2R, B2I )
*
* Normalize so beta > 0, and Im( alpha1 ) > 0
*
BETA( ILAST-1 ) = B1A
BETA( ILAST ) = B2A
ALPHAR( ILAST-1 ) = ( WR*B1A )*S1INV
ALPHAI( ILAST-1 ) = ( WI*B1A )*S1INV
ALPHAR( ILAST ) = ( WR*B2A )*S1INV
ALPHAI( ILAST ) = -( WI*B2A )*S1INV
*
* Step 3: Go to next block -- exit if finished.
*
ILAST = IFIRST - 1
IF( ILAST.LT.ILO )
$ GO TO 380
*
* Reset counters
*
IITER = 0
ESHIFT = ZERO
IF( .NOT.ILSCHR ) THEN
ILASTM = ILAST
IF( IFRSTM.GT.ILAST )
$ IFRSTM = ILO
END IF
GO TO 350
ELSE
*
* Usual case: 3x3 or larger block, using Francis implicit
* double-shift
*
* 2
* Eigenvalue equation is w - c w + d = 0,
*
* -1 2 -1
* so compute 1st column of (A B ) - c A B + d
* using the formula in QZIT (from EISPACK)
*
* We assume that the block is at least 3x3
*
AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
$ ( BSCALE*T( ILAST-1, ILAST-1 ) )
AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
$ ( BSCALE*T( ILAST-1, ILAST-1 ) )
AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
$ ( BSCALE*T( ILAST, ILAST ) )
AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
$ ( BSCALE*T( ILAST, ILAST ) )
U12 = T( ILAST-1, ILAST ) / T( ILAST, ILAST )
AD11L = ( ASCALE*H( IFIRST, IFIRST ) ) /
$ ( BSCALE*T( IFIRST, IFIRST ) )
AD21L = ( ASCALE*H( IFIRST+1, IFIRST ) ) /
$ ( BSCALE*T( IFIRST, IFIRST ) )
AD12L = ( ASCALE*H( IFIRST, IFIRST+1 ) ) /
$ ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
AD22L = ( ASCALE*H( IFIRST+1, IFIRST+1 ) ) /
$ ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
AD32L = ( ASCALE*H( IFIRST+2, IFIRST+1 ) ) /
$ ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
U12L = T( IFIRST, IFIRST+1 ) / T( IFIRST+1, IFIRST+1 )
*
V( 1 ) = ( AD11-AD11L )*( AD22-AD11L ) - AD12*AD21 +
$ AD21*U12*AD11L + ( AD12L-AD11L*U12L )*AD21L
V( 2 ) = ( ( AD22L-AD11L )-AD21L*U12L-( AD11-AD11L )-
$ ( AD22-AD11L )+AD21*U12 )*AD21L
V( 3 ) = AD32L*AD21L
*
ISTART = IFIRST
*
CALL DLARFG( 3, V( 1 ), V( 2 ), 1, TAU )
V( 1 ) = ONE
*
* Sweep
*
DO 290 J = ISTART, ILAST - 2
*
* All but last elements: use 3x3 Householder transforms.
*
* Zero (j-1)st column of A
*
IF( J.GT.ISTART ) THEN
V( 1 ) = H( J, J-1 )
V( 2 ) = H( J+1, J-1 )
V( 3 ) = H( J+2, J-1 )
*
CALL DLARFG( 3, H( J, J-1 ), V( 2 ), 1, TAU )
V( 1 ) = ONE
H( J+1, J-1 ) = ZERO
H( J+2, J-1 ) = ZERO
END IF
*
DO 230 JC = J, ILASTM
TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
$ H( J+2, JC ) )
H( J, JC ) = H( J, JC ) - TEMP
H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 )
H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 )
TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
$ T( J+2, JC ) )
T( J, JC ) = T( J, JC ) - TEMP2
T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 )
T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 )
230 CONTINUE
IF( ILQ ) THEN
DO 240 JR = 1, N
TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
$ Q( JR, J+2 ) )
Q( JR, J ) = Q( JR, J ) - TEMP
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 )
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 )
240 CONTINUE
END IF
*
* Zero j-th column of B (see DLAGBC for details)
*
* Swap rows to pivot
*
ILPIVT = .FALSE.
TEMP = MAX( ABS( T( J+1, J+1 ) ), ABS( T( J+1, J+2 ) ) )
TEMP2 = MAX( ABS( T( J+2, J+1 ) ), ABS( T( J+2, J+2 ) ) )
IF( MAX( TEMP, TEMP2 ).LT.SAFMIN ) THEN
SCALE = ZERO
U1 = ONE
U2 = ZERO
GO TO 250
ELSE IF( TEMP.GE.TEMP2 ) THEN
W11 = T( J+1, J+1 )
W21 = T( J+2, J+1 )
W12 = T( J+1, J+2 )
W22 = T( J+2, J+2 )
U1 = T( J+1, J )
U2 = T( J+2, J )
ELSE
W21 = T( J+1, J+1 )
W11 = T( J+2, J+1 )
W22 = T( J+1, J+2 )
W12 = T( J+2, J+2 )
U2 = T( J+1, J )
U1 = T( J+2, J )
END IF
*
* Swap columns if nec.
*
IF( ABS( W12 ).GT.ABS( W11 ) ) THEN
ILPIVT = .TRUE.
TEMP = W12
TEMP2 = W22
W12 = W11
W22 = W21
W11 = TEMP
W21 = TEMP2
END IF
*
* LU-factor
*
TEMP = W21 / W11
U2 = U2 - TEMP*U1
W22 = W22 - TEMP*W12
W21 = ZERO
*
* Compute SCALE
*
SCALE = ONE
IF( ABS( W22 ).LT.SAFMIN ) THEN
SCALE = ZERO
U2 = ONE
U1 = -W12 / W11
GO TO 250
END IF
IF( ABS( W22 ).LT.ABS( U2 ) )
$ SCALE = ABS( W22 / U2 )
IF( ABS( W11 ).LT.ABS( U1 ) )
$ SCALE = MIN( SCALE, ABS( W11 / U1 ) )
*
* Solve
*
U2 = ( SCALE*U2 ) / W22
U1 = ( SCALE*U1-W12*U2 ) / W11
*
250 CONTINUE
IF( ILPIVT ) THEN
TEMP = U2
U2 = U1
U1 = TEMP
END IF
*
* Compute Householder Vector
*
T1 = SQRT( SCALE**2+U1**2+U2**2 )
TAU = ONE + SCALE / T1
VS = -ONE / ( SCALE+T1 )
V( 1 ) = ONE
V( 2 ) = VS*U1
V( 3 ) = VS*U2
*
* Apply transformations from the right.
*
DO 260 JR = IFRSTM, MIN( J+3, ILAST )
TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
$ H( JR, J+2 ) )
H( JR, J ) = H( JR, J ) - TEMP
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 )
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 )
260 CONTINUE
DO 270 JR = IFRSTM, J + 2
TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
$ T( JR, J+2 ) )
T( JR, J ) = T( JR, J ) - TEMP
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 )
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 )
270 CONTINUE
IF( ILZ ) THEN
DO 280 JR = 1, N
TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
$ Z( JR, J+2 ) )
Z( JR, J ) = Z( JR, J ) - TEMP
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 )
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 )
280 CONTINUE
END IF
T( J+1, J ) = ZERO
T( J+2, J ) = ZERO
290 CONTINUE
*
* Last elements: Use Givens rotations
*
* Rotations from the left
*
J = ILAST - 1
TEMP = H( J, J-1 )
CALL DLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
H( J+1, J-1 ) = ZERO
*
DO 300 JC = J, ILASTM
TEMP = C*H( J, JC ) + S*H( J+1, JC )
H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
H( J, JC ) = TEMP
TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
T( J, JC ) = TEMP2
300 CONTINUE
IF( ILQ ) THEN
DO 310 JR = 1, N
TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
Q( JR, J ) = TEMP
310 CONTINUE
END IF
*
* Rotations from the right.
*
TEMP = T( J+1, J+1 )
CALL DLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
T( J+1, J ) = ZERO
*
DO 320 JR = IFRSTM, ILAST
TEMP = C*H( JR, J+1 ) + S*H( JR, J )
H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
H( JR, J+1 ) = TEMP
320 CONTINUE
DO 330 JR = IFRSTM, ILAST - 1
TEMP = C*T( JR, J+1 ) + S*T( JR, J )
T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
T( JR, J+1 ) = TEMP
330 CONTINUE
IF( ILZ ) THEN
DO 340 JR = 1, N
TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
Z( JR, J+1 ) = TEMP
340 CONTINUE
END IF
*
* End of Double-Shift code
*
END IF
*
GO TO 350
*
* End of iteration loop
*
350 CONTINUE
360 CONTINUE
*
* Drop-through = non-convergence
*
INFO = ILAST
GO TO 420
*
* Successful completion of all QZ steps
*
380 CONTINUE
*
* Set Eigenvalues 1:ILO-1
*
DO 410 J = 1, ILO - 1
IF( T( J, J ).LT.ZERO ) THEN
IF( ILSCHR ) THEN
DO 390 JR = 1, J
H( JR, J ) = -H( JR, J )
T( JR, J ) = -T( JR, J )
390 CONTINUE
ELSE
H( J, J ) = -H( J, J )
T( J, J ) = -T( J, J )
END IF
IF( ILZ ) THEN
DO 400 JR = 1, N
Z( JR, J ) = -Z( JR, J )
400 CONTINUE
END IF
END IF
ALPHAR( J ) = H( J, J )
ALPHAI( J ) = ZERO
BETA( J ) = T( J, J )
410 CONTINUE
*
* Normal Termination
*
INFO = 0
*
* Exit (other than argument error) -- return optimal workspace size
*
420 CONTINUE
WORK( 1 ) = DBLE( N )
RETURN
*
* End of DHGEQZ
*
END
|