1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
SUBROUTINE DGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
$ LDV, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOB, SIDE
INTEGER IHI, ILO, INFO, LDV, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION LSCALE( * ), RSCALE( * ), V( LDV, * )
* ..
*
* Purpose
* =======
*
* DGGBAK forms the right or left eigenvectors of a real generalized
* eigenvalue problem A*x = lambda*B*x, by backward transformation on
* the computed eigenvectors of the balanced pair of matrices output by
* DGGBAL.
*
* Arguments
* =========
*
* JOB (input) CHARACTER*1
* Specifies the type of backward transformation required:
* = 'N': do nothing, return immediately;
* = 'P': do backward transformation for permutation only;
* = 'S': do backward transformation for scaling only;
* = 'B': do backward transformations for both permutation and
* scaling.
* JOB must be the same as the argument JOB supplied to DGGBAL.
*
* SIDE (input) CHARACTER*1
* = 'R': V contains right eigenvectors;
* = 'L': V contains left eigenvectors.
*
* N (input) INTEGER
* The number of rows of the matrix V. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* The integers ILO and IHI determined by DGGBAL.
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
* LSCALE (input) DOUBLE PRECISION array, dimension (N)
* Details of the permutations and/or scaling factors applied
* to the left side of A and B, as returned by DGGBAL.
*
* RSCALE (input) DOUBLE PRECISION array, dimension (N)
* Details of the permutations and/or scaling factors applied
* to the right side of A and B, as returned by DGGBAL.
*
* M (input) INTEGER
* The number of columns of the matrix V. M >= 0.
*
* V (input/output) DOUBLE PRECISION array, dimension (LDV,M)
* On entry, the matrix of right or left eigenvectors to be
* transformed, as returned by DTGEVC.
* On exit, V is overwritten by the transformed eigenvectors.
*
* LDV (input) INTEGER
* The leading dimension of the matrix V. LDV >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* See R.C. Ward, Balancing the generalized eigenvalue problem,
* SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LEFTV, RIGHTV
INTEGER I, K
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
RIGHTV = LSAME( SIDE, 'R' )
LEFTV = LSAME( SIDE, 'L' )
*
INFO = 0
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
$ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
INFO = -1
ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( ILO.LT.1 ) THEN
INFO = -4
ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
INFO = -4
ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
$ THEN
INFO = -5
ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -8
ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGGBAK', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( M.EQ.0 )
$ RETURN
IF( LSAME( JOB, 'N' ) )
$ RETURN
*
IF( ILO.EQ.IHI )
$ GO TO 30
*
* Backward balance
*
IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
* Backward transformation on right eigenvectors
*
IF( RIGHTV ) THEN
DO 10 I = ILO, IHI
CALL DSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
10 CONTINUE
END IF
*
* Backward transformation on left eigenvectors
*
IF( LEFTV ) THEN
DO 20 I = ILO, IHI
CALL DSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
20 CONTINUE
END IF
END IF
*
* Backward permutation
*
30 CONTINUE
IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
* Backward permutation on right eigenvectors
*
IF( RIGHTV ) THEN
IF( ILO.EQ.1 )
$ GO TO 50
*
DO 40 I = ILO - 1, 1, -1
K = RSCALE( I )
IF( K.EQ.I )
$ GO TO 40
CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
40 CONTINUE
*
50 CONTINUE
IF( IHI.EQ.N )
$ GO TO 70
DO 60 I = IHI + 1, N
K = RSCALE( I )
IF( K.EQ.I )
$ GO TO 60
CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
60 CONTINUE
END IF
*
* Backward permutation on left eigenvectors
*
70 CONTINUE
IF( LEFTV ) THEN
IF( ILO.EQ.1 )
$ GO TO 90
DO 80 I = ILO - 1, 1, -1
K = LSCALE( I )
IF( K.EQ.I )
$ GO TO 80
CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
80 CONTINUE
*
90 CONTINUE
IF( IHI.EQ.N )
$ GO TO 110
DO 100 I = IHI + 1, N
K = LSCALE( I )
IF( K.EQ.I )
$ GO TO 100
CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
100 CONTINUE
END IF
END IF
*
110 CONTINUE
*
RETURN
*
* End of DGGBAK
*
END
|