1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
$ WORK, LWORK, INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGELSY computes the minimum-norm solution to a real linear least
* squares problem:
* minimize || A * X - B ||
* using a complete orthogonal factorization of A. A is an M-by-N
* matrix which may be rank-deficient.
*
* Several right hand side vectors b and solution vectors x can be
* handled in a single call; they are stored as the columns of the
* M-by-NRHS right hand side matrix B and the N-by-NRHS solution
* matrix X.
*
* The routine first computes a QR factorization with column pivoting:
* A * P = Q * [ R11 R12 ]
* [ 0 R22 ]
* with R11 defined as the largest leading submatrix whose estimated
* condition number is less than 1/RCOND. The order of R11, RANK,
* is the effective rank of A.
*
* Then, R22 is considered to be negligible, and R12 is annihilated
* by orthogonal transformations from the right, arriving at the
* complete orthogonal factorization:
* A * P = Q * [ T11 0 ] * Z
* [ 0 0 ]
* The minimum-norm solution is then
* X = P * Z' [ inv(T11)*Q1'*B ]
* [ 0 ]
* where Q1 consists of the first RANK columns of Q.
*
* This routine is basically identical to the original xGELSX except
* three differences:
* o The call to the subroutine xGEQPF has been substituted by the
* the call to the subroutine xGEQP3. This subroutine is a Blas-3
* version of the QR factorization with column pivoting.
* o Matrix B (the right hand side) is updated with Blas-3.
* o The permutation of matrix B (the right hand side) is faster and
* more simple.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of
* columns of matrices B and X. NRHS >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit, A has been overwritten by details of its
* complete orthogonal factorization.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the M-by-NRHS right hand side matrix B.
* On exit, the N-by-NRHS solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,M,N).
*
* JPVT (input/output) INTEGER array, dimension (N)
* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
* to the front of AP, otherwise column i is a free column.
* On exit, if JPVT(i) = k, then the i-th column of AP
* was the k-th column of A.
*
* RCOND (input) DOUBLE PRECISION
* RCOND is used to determine the effective rank of A, which
* is defined as the order of the largest leading triangular
* submatrix R11 in the QR factorization with pivoting of A,
* whose estimated condition number < 1/RCOND.
*
* RANK (output) INTEGER
* The effective rank of A, i.e., the order of the submatrix
* R11. This is the same as the order of the submatrix T11
* in the complete orthogonal factorization of A.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* The unblocked strategy requires that:
* LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
* where MN = min( M, N ).
* The block algorithm requires that:
* LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
* where NB is an upper bound on the blocksize returned
* by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
* and DORMRZ.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: If INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* Based on contributions by
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
* E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
*
* =====================================================================
*
* .. Parameters ..
INTEGER IMAX, IMIN
PARAMETER ( IMAX = 1, IMIN = 2 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
$ LWKOPT, MN, NB, NB1, NB2, NB3, NB4
DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
$ SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
* ..
* .. External Functions ..
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL ILAENV, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
$ DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
MN = MIN( M, N )
ISMIN = MN + 1
ISMAX = 2*MN + 1
*
* Test the input arguments.
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -7
END IF
*
* Figure out optimal block size
*
IF( INFO.EQ.0 ) THEN
IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
LWKMIN = 1
LWKOPT = 1
ELSE
NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
NB = MAX( NB1, NB2, NB3, NB4 )
LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
LWKOPT = MAX( LWKMIN,
$ MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
END IF
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGELSY', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
RANK = 0
RETURN
END IF
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max entries outside range [SMLNUM,BIGNUM]
*
ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
RANK = 0
GO TO 70
END IF
*
BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
IBSCL = 2
END IF
*
* Compute QR factorization with column pivoting of A:
* A * P = Q * R
*
CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
$ LWORK-MN, INFO )
WSIZE = MN + WORK( MN+1 )
*
* workspace: MN+2*N+NB*(N+1).
* Details of Householder rotations stored in WORK(1:MN).
*
* Determine RANK using incremental condition estimation
*
WORK( ISMIN ) = ONE
WORK( ISMAX ) = ONE
SMAX = ABS( A( 1, 1 ) )
SMIN = SMAX
IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
RANK = 0
CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
GO TO 70
ELSE
RANK = 1
END IF
*
10 CONTINUE
IF( RANK.LT.MN ) THEN
I = RANK + 1
CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
$ A( I, I ), SMINPR, S1, C1 )
CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
$ A( I, I ), SMAXPR, S2, C2 )
*
IF( SMAXPR*RCOND.LE.SMINPR ) THEN
DO 20 I = 1, RANK
WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
20 CONTINUE
WORK( ISMIN+RANK ) = C1
WORK( ISMAX+RANK ) = C2
SMIN = SMINPR
SMAX = SMAXPR
RANK = RANK + 1
GO TO 10
END IF
END IF
*
* workspace: 3*MN.
*
* Logically partition R = [ R11 R12 ]
* [ 0 R22 ]
* where R11 = R(1:RANK,1:RANK)
*
* [R11,R12] = [ T11, 0 ] * Y
*
IF( RANK.LT.N )
$ CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
$ LWORK-2*MN, INFO )
*
* workspace: 2*MN.
* Details of Householder rotations stored in WORK(MN+1:2*MN)
*
* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
*
CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
$ B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
*
* workspace: 2*MN+NB*NRHS.
*
* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
*
CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
$ NRHS, ONE, A, LDA, B, LDB )
*
DO 40 J = 1, NRHS
DO 30 I = RANK + 1, N
B( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
*
* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
*
IF( RANK.LT.N ) THEN
CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
$ LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
$ LWORK-2*MN, INFO )
END IF
*
* workspace: 2*MN+NRHS.
*
* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
*
DO 60 J = 1, NRHS
DO 50 I = 1, N
WORK( JPVT( I ) ) = B( I, J )
50 CONTINUE
CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
60 CONTINUE
*
* workspace: N.
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
END IF
*
70 CONTINUE
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of DGELSY
*
END
|